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a b s t r a c t

Graphitic carbons from the combustion of bituminous coals and, perhaps, other coal ranks, tend to
capture iron and a number of hazardous elements, including As, Hg, and Se. Rare earth elements in fly
ashes occur in minerals, such as monazite, xenotime, and davidite. They also occur in sub-nm particles,
probably in a mineral form, within the AleSi glass on the investigated fly ashes. Just as graphitic carbons
can capture Fe and hazardous elements, the carbons surrounding the fly ash glass and magnetic particles
captures or encapsulates a broad suite of rare earth elements.
© 2020 Sinopec Petroleum Exploration and Production Research Institute. Publishing services by Elsevier
B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Rare earth elements and yttrium in coal-combustion fly ash

Rare earth elements, collectively the lanthanides, Y, and Sc
following the nomenclature of Connelly et al. (2005), are critical in a
number of industrial applications in modern society (Swift et al.,
2014; USGS, 2014; Watson, 2018). Coal combustion by-products
hold an advantage of being a concentrated, fine-grained source of
rare earths (US DOE, 2018).

Fly ash carbons include not only the inertinite, chars, and cokes
observable by conventional optical petrology, but also sub-micron-
size amorphous and graphitic carbons attached to and binding fly
ash particles (Hower et al., 2017a). In this review, following an
introduction to the use of electron microscopy techniques in the
investigation of non-rare earth elements in fly ashes, studies of

micron- and nanometer-scale rare earth minerals in fly ash, the
dispersion of sub-nanometer rare earthminerals inflyash glass, and
the occurrence of nanoscale rare earth-rich inclusions in fly ash
carbons will be discussed. This work follows the conventions of
Seredin and Dai (2012) in their consideration of REE to mean the
lanthanides, REY to imply REE þ Y, and the division of light versus
heavy REE to include La through Smand Eu through Lu, respectively.

1.2. Transmission electron microscopy investigations of metals in fly
ash carbons

A number of investigators, including Veranth et al. (2000) and
Chen et al. (2004), refined the electron microbeam examination of
the carbons (soots) produced in the combustion of coal and residual
oils. Chen et al. (2004) described the turbostratic structure of fly ash
carbons and noted the presence of V sulfates, oxides, and Ca-, Ni-,
and Na-vanadates; Ni sulfates and oxides, including a NiAl2O4
spinel; Fe sulfates, sulfides, phosphates, and oxides; and lesser
occurrences of Ti, Cr, Cu, Zn, Ba, Ca, Cu, and Pb compounds.

Chen et al. (2005a) selected onehigh volatile bituminous coal from
Western Kentucky and subbituminous Powder River Basin coals, one
each fromWyoming andMontana, for combustion in a 50-kW, 4.1-m-
long, and 20-cm-inside-diameter down-fired furnace. The fly ashes
were examined with a 200-keV field emission high-resolution scan-
ning transmissionelectronmicroscope(HR-STEM)with theutilization
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Fig. 1. Graphitic carbons (light gray) surrounding AleSi spheres (dark gray to black) with encased metal particles (white arrows in lower-right figure) (after Hower et al., 2008).
Scale bars equal 20 nm on the two left figures, 100 nm on the upper-right figure, and 10 nm on the lower-right figure.

Fig. 2. STEM images of graphitic carbon and encased particles (a and b) with EDS spectrum showing As and Hg peaks (c is spectrum for inset on image a; d is spectrum for inset on
image b) (after Hower et al., 2008). Scale bars ¼ 200 nm.
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of Gatan parallel electron energy loss spectroscopy (PEELS), energy
dispersive spectroscopy (EDS), selected area electron diffraction
(SAED), and microbeam diffraction (MBD) techniques. The Western
Kentucky-derived fly ash contained spherical-to irregular-shaped
cokes and chars and 100-nm to 1-mm soot aggregates. The primary
particles in the 20-50-nm aggregates consisted of concentrically-
stacked graphitic layers. Several inorganic associations (Fe, Ti, Ca,
AleTi, TieAleFe, FeeSieAl, TieSieAl, and AleMgeFe) were detected
along with the carbons; with magnetite, rutile, lime, various non-
magnetite spinels (Chen et al., 2005a), and maghemite (g-Fe2O3)
(Chenet al., 2005b) being themajorminerals. Yanget al. (2017) further
examined the nature of Ti-oxides in coal-derived fly ash, determining
that many of the T-bearing minerals were actually Ti-suboxides, spe-
cifically Magn�eli phases, with a TixO2x-1 formulawith 4 � x� 9, with
the most abundant Magn�eli phase being Ti6O11. Toxicity studies indi-
cated an impact on the viability of zebrafish embryos (Yang et al.,
2017).

Linak et al. (2007) produced fly ash from subbituminous Mon-
tana coal and high volatile bituminous Utah and Illinois coals. Ul-
trafine particles were enriched in S, Cl, Na, K, V, and P; with a
depletion in Si, Al, Ca, Ti, and Mg; and inconsistent trends for Fe.
Soot contained Fe particles and thiophenic S. Toxicology studies on
mice showed that the Montana coal caused the highest levels of
lung endemawith the Illinois and Utah coals have little to no effect.
Iron oxides, possibly associated with Cr, caused oxidative stresses
on tissues. In a toxicology study of a laboratory-produced fly ash
from an Illinois coal, Cho et al. (2009) found that Fe-bearing soot
was associated with increased pulmonary inflammation.

Hower et al. (2008) examined fly ash from electrostatic precipi-
tator (ESP) hoppers at a southeastern Kentucky wall-fired 220-MW
unit. At the time of the ash collection, the unit was burning a single-
seam, single-mine coal from Knox County, Kentucky (Mardon and
Hower, 2004). Using the same instruments as Chen et al. (2005a, b),
they noted AleSiflyashparticleswith attached graphitic carbonwith
encased few-nmmetalparticles (Fig.1). TheEELSFeL3peakat715keV
compared to the FeL2 peak at 720 keV suggests that both ferric and
ferrous Fe are present in the particles, indicating that it is amagnetite
or similar spinel mineral. STEM imaging accompanied by EDS in-
dicates that As andHg are presentwithin the graphitic carbon (Fig. 2).

Wilcox et al. (2015) examined two Illinois Basin bituminous-
derived fly ashes and one 70:30 blend of Illinois Basin coal (the
same coal as for one of the latter units) and Powder River Basin
subbituminous coal. The Illinois Basin-derived fly ashes contained
CreAseVeMn-bearing spinel; NieZn-bearing spinel; and Fe spinels

with Cd, Se, and Co. They did not observemetalswithin the graphitic
carbon seen in the Illinois Basin-derived ashes. Similarly, Saikia et al.
(2015) noted nanotubes, but no metals, in fly ash from coals of As-
sam, India.

Silva et al. (2010) examined an Eastern Kentucky coal-sourced
stoker ash, finding abundant fullerenes and metallofullerenes in
the fine baghouse ash. The ash, originally investigated by Mardon
et al. (2008) with a later study by Fu et al. (2018), has high levels
of As, exceeding 9000 ppm in a size fraction of the baghouse ash (Fu
et al., 2018). Concentrations of both As and Se are controlled by the
concentrations of Fe oxides in the ash (Fu et al., 2018). Silva et al.
(2010) noted carbonaceous AsePbeSeeBreSieO- (Fig. 3) and Hg-
and Se-bearing nanoparticles within the graphitic carbon (Fig. 4).

Silva et al. (2012) investigated anthracite-derived fly ash carbons

Fig. 3. Left: AsePbeSeeBreSieO nanoparticle in circle; Right: Enlarged view of carbon surrounding AleSi fly ash particle (after Silva et al., 2010). Scale bars equal 10 nm (left) and
5 nm (right).

Fig. 4. Mercury-bearing nanoparticles in well-developed graphitic carbon from a
stoker-fired steam plant burning eastern Kentucky coal (after Silva et al., 2010). Scale
bar ¼ 2 nm.
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Fig. 5. Halogen-bearing nanoparticles (A) and CueMoePbeSeeV nanoparticles (B) (after Silva et al., 2012). Scale bars equal 5 nm (A) and 10 nm (B).

Fig. 6. HRTEM (top) and EDS (bottom) indications of Pb- and Ti-bearing particles in nanotubes from Portuguese anthracite-derived fly ash (modified after Ribeiro et al., 2013). The
W peak is an artefact of the tungsten filament in the TEM. Scale bars equal 10 nm (upper left) and 5 nm (upper right).

J.C. Hower and J.G. Groppo Energy Geoscience 2 (2021) 90e98
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from two power plants in Yunnan, China. They noted Br and other
halogens encapsulated as 3- to 8-nm particles within multi-walled
carbon nanotubes (MWCNT) (Fig. 5A). All MWCNTcontain complex
heterogeneous CueMoePbeSeeV nanoparticles (Fig. 5B) and all
carbon nanotubes contain CueMoePbeV nanoparticles. Ribeiro
et al. (2013) found Hg-, Se-, Co-, Ti-, and Pb-bearing nanotubes in
a Portuguese anthracite-derived fly ash (Fig. 6).

The co-combustion of coal and other materials, such as petro-
leum coke andwaste tires, poses special challenges for determining
the source of the metals in fly ashes. Silva et al. (2013) found
VeFeeAleCd- and Ni-bearing particles in MWCNT from the fly ash
of a coal- and petroleum coke-fired unit in Western Kentucky. High
concentrations of V and Ni are found in the fly ash, largely owing to
the petroleum coke in the fuel blend. The fly ash from a cyclone unit
burning 2e3%waste tireswith an Illinois Basin coal blend hadnano-
size sphalerite but no apparent fullerenes (Silva et al., 2011). Aside

fromtheZn in the coal, Zn is inboth the coatingsof the steel belts and
also in the rubber in the shredded tires (Hower et al., 2001).

2. Current study methods

Fly ashes were collected from several locations in the United
States, including the ash pond at a central Kentucky power plant
(Hower et al., 2017b), a fly ash generated in the combustion of the
REE-rich Fire Clay coal at a southeastern Kentucky power plant
(Hood et al., 2017), a university-based stoker-fired steam plant
(Howeret al., 2018), a southeasternUSpowerplant burningREE-rich
Fire Clay coal (Hower et al., 2019a), and a distillery-based stoker-
fired steamplant (Hower et al., 2019b). Hower et al. (2020) discussed
the pilot-scale beneficiation of later collections of fly ashes from the
plants discussed byHower et al. (2017b) andHood et al. (2017). All of
the coal sources were from central eastern Kentucky mines.

Scanning electron microscopy (SEM) and EDS was conducted
using a Helios NanoLab 660 DualBeam focused ion beam (FIB)/SEM
and TEM was run on a JEOL 2010F instrument at the University of
Kentucky Electron Microscopy Center. Further TEM studies were
conducted on a JEOL 2100 analytical TEM with a large window EDS
detector at the Virginia Tech National Center for Earth and Envi-
ronmental Nanotechnology Infrastructure (NanoEarth), Blacksburg,
VA. HR-TEM was also conducted on an FEI Tecnai TF20 TEM oper-
ating at 200 keV at the National Institute for Occupational Safety
and Health in Cincinnati, OH.

3. Rare earth elements associated with fly ash

Aside from associations with carbons, a number of REY-bearing
and other minerals were found in the fly ashes studied by Hood
et al. (2017) and Hower et al. (2017b). As an example of the other,
non-REY-bearing mineral assemblages is a complex grain with TiO2

(and/or TixO2x-1; Magn�eli phases after Yang et al., 2017), mullite, and
AleSi glass with Fe-rich (spinel) inclusions (Fig. 7). Yttrium-bearing
zircons (Hood et al., 2017; Hower et al., 2020) (Fig. 8), monazite
(Howeret al., 2019b),monazitewith included xenotime (Hower et al.,
2017b), cerium orthophosphate (possibly Ce-rich monazite) (Hower
et al., 2018), and davidite (Hower et al., 2019b) are among the REY-
bearing minerals detected in fly ashes and stoker ashes. REY can
also be finely (sub-nm) distributedwithin the AleSi glass; diffraction
studies indicate that minerals are present, but their size and random

Fig. 7. Complex fly ash grain with included TiO2 minerals, mullite, and AleSi glass with Fe-rich inclusions. Insets on the right show the element overlays for Si, Al, and Ti and for Fe
and Ti. Modified after Hood et al. (2017). Scale bar on bright-field TEM image (left) equals 500 nm (0.5 mm).

Fig. 8. Yttrium-bearing zircon from fly ash sample 91,953. Unpublished from Hood
et al. (2017) study. Scale ¼ 20 nm.
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orientation defies quantification at the HRTEM scales used in our
studies (Hower et al., 2019a). In the latter study, La, Ce, Pr, Nd, and Sm
(with La peaks possibly attributable to Gd and Dy) were identified
within an AleSi glass sphere (their Fig. 2). Hood et al. (2017, their
Fig. 6) identified a CeeLa-Nd-bearing glass.

In line with the established association of metals with the car-
bons surrounding AleSi glass fly ash particles, Hood et al. (2017) and
Hower et al. (2017b) noted examples of rare earth associations with
fly ash carbons. In Fig. 9A, a thin, seemingly less than 100-nm thick,
carbon shell surrounds an AleSi glass sphere. The carbon, in turn,
contains Ce andNd (Fig. 9B and C). Similarly, Fig.10 shows La, Ce, Nd,
Pr, Sm, and Gd (?) associations with the carbon surrounding AleSi
glass spheres. The resolution is not fine enough to determine if the
individual REE are in the same particles or occur individually or in
varying concentrations. A detailed viewof graphitic carbon from the

C-rich frothflotationproduct offlyashbeneficiation shows few-nm-
size Ce- and Fe-rich particles (Fig. 11). While the TEM-EDS software
identified the lesser Ce peaks (meaning the Lß, etc., peaks), the lo-
cations are close to those of the La, Pr, Sm, and Gd peaks, suggesting
that these lanthanidesmayalso be present in the particles. Note that
while the software identified Ce Ma peaks, their locations are
obscured by the carbon and other light element peaks.

Carbon does not just surround the glassy fly ash particles, it also
encases the Fe-spinels (magnetite). A Fe-spinel with a carbon
coating is shown in Fig. 12. In this case, Ce and Sm (illustrated on
Fig. 12B) were detected within the carbon. As above, a broader suite
of REE is possible but they cannot be detected at this relative scale.
The magnetite-rich fraction of a beneficiated fly ash (Hower et al.,
2017b) shows a REE enrichment in the carbon binding together
several spinel grains (Fig. 13A). Among the REY, Nd is illustrated in

Fig. 9. LaeCe- and LaeCe-Nd-bearing particles (B and C) in carbon surrounding AleSi glass fly ash particle (A) (unpublished from Hower et al., 2017b). Scale bar in (A) is 200 nm
(0.2 mm).

Fig. 10. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image of AleSi glass fly ash particles surrounded by carbon (A) with element
overlays of Nd (B) and Sm (C) and the EDS spectrum for the area indicated by the dashed yellow box (D) (unpublished from Hower et al., 2017b). Scale ¼ 40 nm.

J.C. Hower and J.G. Groppo Energy Geoscience 2 (2021) 90e98

95



Fig. 11. Particles (within yellow box) in graphitic carbon (A) and shown to contain Ce and Fe (B) (unpublished from Hower et al., 2017b). Scale ¼ 10 nm.

Fig. 12. Fe-spinel (A) with Ce and Sm in the carbon surrounding the spinel (B). The Ce, Sm, and Fe Ka and Fe Kß EDS peaks are shown in (C) (unpublished from Hower et al., 2017b).
Scale bar is 200 nm for (A) and 100 nm for (B).

Fig. 13. Carbon deposits surrounding magnetite and hematite in the magnetics concentrate from the beneficiation of a fly ash (modified from Hower et al., 2017b). Scale bar is
0.2 mm or 200 nm.
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Fig. 13B, but Y, La, Ce, and Sm are also present.
Hower et al. (2017b, 2020) noted the enrichment of Gd in the

magnetic fractions of some beneficiated fly ashes. While the overall
REY content of the magnetic fraction is somewhat lower than other
fractions (327-ppm REY for the magnetic fraction versus 485-ppm
REY for the <200-mesh clean product (Hower et al., 2020)), the Gd
concentrations are 55 ppm and 18 ppm for the same two fractions,
respectively. Praseodymium is the only other REY element with a
significantly increased concentration in the magnetic fraction
(35 ppm versus 19 ppm). Terbium also has an increased concentra-
tion, but, as an odd-numbered heavy REE, the baseline is low and a
comparison of 2 ppm versus 5 ppm is not highly significant. At this
time, an electron microbeam investigation has not yet been
conducted.

4. Summary

Chenet al. (2005a, b), Linaket al. (2007),Howeret al. (2008), Silva
et al. (2010, 2011, and 2012), Ribeiro et al. (2013), and Wilcox et al.
(2015) noted metal- and halogen-bearing amorphous, graphitic,
and fullerene carbons in the fly ashes from the combustion of bitu-
minous- and anthracite-rank coals. Nano-scale Fe is a common
constituent in the carbons and its combinationwith the sootmay be
a factor in pulmonary inflammation (Cho et al., 2009). Yang et al.
(2017) suggested that Magn�eli phases (TixO2x-1) are potentially
hazardous. Aside from the Fe- and Ti-bearing particles, As, Se, Pb,
and Hg are common elements in the fine carbons.

Lanthanides and Y occur in plus-micron, sub-micron, and nano-
scale particles in fly ash. Among the occurrences noted are Y-bearing
zircons (Hood et al., 2017; Hower et al., 2020), monazite (Hower et al.,
2019b), monazite with included xenotime (Hower et al., 2017b),
cerium-rich monazite (Hower et al., 2018), and davidite (Hower et al.,
2019b).Nano-scalegrainscontainingLa,Ce,Nd,Pr, Sm,and/orGdwere
found in amorphous and graphitic carbons surrounding and binding
both AleSi glass and Fe-spinel (magnetite) fly ash particles.
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