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Abstract: Microalgae are a potential means of recycling CO2 from industrial point sources. With this
in mind, a novel photobioreactor (PBR) was designed and deployed at a coal-fired power plant.
To ascertain the feasibility of using waste heat from the power plant to heat algae cultures during
cold periods, two heat transfer models were constructed to quantify PBR cooling times. The first,
which was based on tabulated data, material properties and the physical orientation of the PBR
tubes, yielded a range of heat transfer coefficients of 19–64 W m−2 K−1 for the PBR at wind speeds of
1–10 m s−1. The second model was based on data collected from the PBR and gave an overall heat
transfer coefficient of 24.8 W m−2 K−1. Energy penalties associated with waste heat utilization were
found to incur an 18%–103% increase in energy consumption, resulting in a 22%–70% reduction in
CO2 capture for the scenarios considered. A techno-economic analysis showed that the cost of heat
integration equipment increased capital expenditures (CAPEX) by a factor of nine and increased
biomass production costs by a factor of three. Although the scenario is thermodynamically feasible,
the increase in CAPEX incurs an increase in biomass production cost that is economically untenable.

Keywords: algae; carbon dioxide; photobioreactor; flue gas; power plant; utilization

1. Introduction

Microalgae are a viable feedstock for the production of a variety of valuable commodities, as well
as a medium for the capture of carbon dioxide emissions from industrial point sources such as
combustion-based power plants. The idea of reducing CO2 emissions using microalgae was first
demonstrated in the 1990s [1–4], indeed, studies have shown the ability of microalgae to adequately
uptake carbon dioxide from industrial flue gas despite possible exposure to SOx and NOx [5,6] and
high CO2 concentrations [7–10]. Moreover, it has been demonstrated that microalgae fed on flue gas
can thrive while actually reducing NOx emissions by utilizing flue gas NOx as a nitrogen source [11].

Along with an obvious interest in reducing carbon dioxide emissions, economic interest in
microalgae continues to expand into a variety of markets due to the diverse group of products that
different strains produce. These include biofuels, bioplastics, animal feed, and high-value biochemicals
such as β-carotene, astaxanthin, and omega-3 fatty acids [12–17].

Although published proof-of-concept studies concerning algae-based CO2 capture are limited in
number [4,18–21], the use of industrial flue gas as a carbon source for microalgae is becoming more
common, with several demonstrations taking place at power plants around the world [4]. We previously
reported the operation of pilot-scale photobioreactors (PBRs) at Duke Energy’s East Bend Station located
in Boone County, KY since late 2012 [11,22]. Compared to open raceway ponds, photobioreactors offer
advantages for algae biomass production, including a greater areal productivity [23], minimal water
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loss from evaporation, and greater carbon capture efficiencies [24]. However, PBRs typically display
high energy penalties which are associated with the continuous circulation of large volumes of algae
culture, while biofilm formation has also been a major technical hurdle to the deployment and scale up
of photobioreactors. Fully developed flow, as a result of continuous liquid flow in a pipe, results in a
“no slip” condition at the pipe wall. This provides convenient conditions for algae cells to accumulate
on the wall of the tube [11].

To avoid these issues, the “cyclic flow” PBR deployed at the East Bend Station does not flow
continuously. Rather, the PBR is drained, mixed, and filled on a six hour schedule in order to
homogenize the culture and to activate buoyant pipe pigs (one in each tube) that are equipped with
flexible silicone gaskets at each end (Figure 1). Each time the reactor is drained and filled, the pipe
pigs travel the length of the polyethylene terephthalate (PET) tubes, such that biofilm is removed from
the inside tube walls by the scouring action of the silicone gaskets. Biofilm mitigation is additionally
controlled by the introduction of gas bubbles in the vertical PET tubes to create multidimensional fluid
mixing. This is accomplished by pressurizing flue gas (to 10–15 psig) and introducing it at the bottom
of each tube. Energy savings are also realized by duty cycling the sparging of gas based on the needs
of the algae culture for mixing, suspension, and the provision of an adequate amount of CO2.
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Figure 1. Cyclic flow photobioreactor (PBR) deployed at East Bend Station power plant.

In past contributions, we examined PBR performance based on algae growth rates, system CO2

capture efficiency and the PBR’s role as a secondary scrubber for NOx and SOx gases. In this study,
a possible scenario was evaluated where the growing season was extended by utilizing waste heat
from the power plant to raise the temperature of algae cultures. Whereas temperatures at East Bend
Station are conducive to an annual 240 day algae growing season, in this study the growing season
was assumed to extend from 240 days to 300 days. More generally, the determination of the PBR’s
heat transfer properties and its potential to utilize power plant waste heat as a method of maintaining
algae culture temperatures could allow for PBR installations in extreme latitudes, such as those where
sunlight is abundant, but where temperatures may not facilitate culture growth. In principle, this could
expand the potential geographic placement of this particular PBR technology. To the best of our
knowledge, such studies are lacking in the literature.

Previous experiments with Scenedesmus acutus algae cultures indicate that the onset of
photosynthesis occurs when the culture temperature reaches 12 ◦C, i.e., temperatures below 12 ◦C
cannot sustain culture growth. Several heat sources at the East Bend Station were evaluated as possible
sources for integration with the cyclic flow PBR, the most abundant and accessible being the circulating
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water stream that flows from the boiler structure to the cooling towers. This stream contains waste heat
as water at a temperature range of 45–32 ◦C and flow rate of 910,000 L min−1. One study has examined
multiple feasible uses for this circulating water, including using an open algae pond as a heat sink [25].
The main advantages of this approach were found to be rejection of waste heat, consumption of CO2

by feeding flue gas, and the production of valuable biomass.
In order to determine how often the cyclic flow PBR at the East Bend Station would necessitate

heat injection via cycling, in the present study, heat transfer models were constructed based on the
cooling time from 25 ◦C to 12 ◦C within the cyclic flow PBR (25 ◦C being a favorable temperature for
algae growth). Flue gas that feeds CO2 to the PBR was also considered as a heat source. On the basis of
the results, the feasibility of using waste heat at the power plant to extend the algae growing season
was assessed.

2. Materials and Methods

Scenedesmus acutus was cultured in a PBR at the East Bend Station using methods previously
described in the literature [11,22]. Culture growth at the East Bend Station was monitored by means
of dry mass measurements (g·L−1), optical microscopy, and UV spectrophotometry as previously
described [11].

Ambient temperature and reactor temperature were recorded for the 2015 growing season using J
thermocouples. Photosynthetically active radiation (PAR) was measured using an Apogee SQ-215
quantum sensor. Data were logged using a National Instruments cRIO NI-9205 CPU. The mass and
heat capacity of the liquid within the reactor were estimated based on the PBR’s known volume and
the density and heat capacity of water [26]. At any time, the algae culture amounted to less than 0.1%
of the total mass within reactor and its contributions to density and heat capacity were considered
negligible. The East Bend Station, located on the southern shore of the Ohio River, has an average
ground wind speed of 1.7 m s−1 [27].

3. Results and Discussion

3.1. Flue Gas Injection as a Heat Transfer Mechanism

Initial calculations showed that heating the PBR via the flue gas feed was not practical. This would
have allowed for normal operation of the reactor with no increase in cycling frequency, only incurring
the energy penalty associated with heating the injected gas. However, given its low heat capacity,
around 1000 J kg−1 K−1, calculations showed flue gas to be an inadequate carrier of heat to the reactor,
as shown in Figure 2 [26].

The term
.

V V−1
R in Figure 2 refers to the volumetric flow rate of gas into the PBR (L s−1) divided

by the volume of the reactor (1136 L). The solid blue line represents
.

V V−1
R associated with the typical

volumetric gas flow rate into the cyclic flow PBR of 0.41 standard L s−1 (reactor volume = 1136 L) based
on typical operating conditions at the East Bend Station. Both y axes represent the associated change in
flue gas temperature required to supply sufficient heat to maintain a constant reactor temperature of
25 ◦C at the given ambient temperature range. At current volumetric flow rates, the ∆T needed to keep
the reactor at a constant 25 ◦C is in the order of 4000–90,000 ◦C, a ludicrous range. The dotted line and
right y-axis represent a volumetric flow rate of flue gas of 1136 L s−1, or a

.
V V−1

R of 1 s−1, which has a
reasonable range of ∆T but an impossible volumetric flow rate. This gas injection rate would displace
all of the liquid within the reactor.
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3.2. Water that Circulates to Cooling Towers as a Heat Source

A more feasible design was considered, where algae culture temperatures are elevated through
the use of a countercurrent heat exchanger during the liquid cycling process in the PBR (Figure 3).
Waste heat traveling from the power plant to the cooling towers in the form of water serves as the heat
source. In this design, a slipstream is diverted from the circulating water stream and is pumped to the
location of the PBR. Heat transfer is accomplished by flowing the PBR liquid and the circulating water
stream to the tube and shell side of the heat exchanger, respectively.
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A slipstream of water that circulates from the power plant to the cooling towers is simultaneously
cooled from 38 ◦C to 29 ◦C.
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The cyclic flow PBR typically cycles every six hours in normal operation, using a pump to drain
and fill the tube banks. In order to determine how often the cyclic flow PBR would require heat
injection in cold weather via cycling, a heat transfer model was constructed based on the cooling time
from 25 ◦C to 12 ◦C within the cyclic flow PBR. The overall heat transfer coefficients were derived and
calculated using two different models.

Within the cyclic flow reactor, each tube acts as an individual bubble column reactor. Flue gas is
injected via compression-induced pressure-driven flow and bubbled through vertical columns (tubes).
A basic equation for heat transfer within a column is derived as follows:

− qr = qU + qFG + qλ + qs (1)

where qr is the heat inside the column, qU is the heat transfer at the reactor wall, qFG is the heat supplied
to the reactor by the injected flue gas, qλ is the heat contribution from the latent heat of water as the
gas phase composition changes before entering and after leaving the reactor, and qs is solar gain as
illustrated in Figure 4.
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Figure 4. Visual representation of Equation (1), where, qr is the heat inside the column, qU is the heat
transfer at the reactor wall, qFG is the heat supplied to the reactor by the injected flue gas, qλ is the heat
contribution from the latent heat of water as the gas phase composition changes before entering and
after leaving the reactor, and qs is solar gain.

For estimative calculations, a steady-state equation was applied in the form of

−mRCpR
( dTR

dt

)
= UA (TR − T∞) +

.
mFGCpFG(Tin − Tout) +

.
mFGλH2O

(
yH2OIN − yH2OOUT

)
+ F12Aσ

(
Twall

4
− Tsun

4
) (2)

where, UA (TR − T∞) represents the heat through and around the tube wall,
.

mFGCpFG(Tin − Tout)

represents the heat transfer as contributed by flue gas entering and exiting the tube column,
.

mFGλH2O
(
yH2OIN − yH2OOUT

)
represents heat transfer as contributed by the latent heat of vaporization

of water as water vapor enters and leaves the tube column, and F12Aσ
(
Twall

4
− Tsun

4
)

represents solar
gain which includes a unitless constant F12 that factors in the emissivity of the PBR as well as its
geometric orientation. Time-temperature charts (tabulated model) and summary techniques based
on data-derived coefficients (data-based model) were used to determine the reactor cooling times,
from which the required frequency of cycling was calculated (required to maintain the reactor at a
temperature of at least 12 ◦C). The energy cost associated with the increase in required cycling time was
calculated for a hypothetical algae installation (sized for a 1 MW power plant), the energy requirement
being calculated according to a previously performed lifecycle assessment.
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3.3. Tabulated Heat Transfer Model

The first model uses tabulated data as well as physical and material properties of the cyclic flow
reactor. The model was constructed based on the cyclic flow PBR’s material composition, geometry,
and position at the East Bend Station, as well as tabulated data for water, polyethylene terephthalate
(PET), and air using correlations found in the literature [26,28]. The surface area of the tubes functioned
as the site of heat transfer.

The reactor was assumed to be filled with standing water, neglecting the effects of flue gas
injection. Therefore, the tabulated model attempted to provide an estimate of qU. The foregoing flue
gas calculations (qFG and qλ) allowed for an initial estimation of heating and cooling times for liquid
in the reactor. Data confirmed that the heat contributions of qFG and qλ (those contributed by flue
gas injection and latent heat resulting from the change of the mass fraction of water in the gas phase)
were negligible. Conduction, as represented by qU, which is dominated by sunlight (solar gain) and
wind speed, was the main heat transfer driving force as confirmed by data collected at East Bend.
As shown in Figure 5, reactor conduction, qU, follows a pattern consistent with the presence or absence
of sunlight and is shown to be an order of magnitude larger than those contributions from gas injection.
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In order to estimate U (the overall heat transfer coefficient for the reactor), a model for a single
tube was necessary. The steady-state heat transfer coefficient for a single tube in the cyclic flow PBR is
defined as the inverse of the sum of convective and conductive resistances, derived and modeled for a
long cylinder using correlations from Green and Perry [29]:

U =

Ao


(

1
hH2OAi

)
+

 ln
(

ro
ri

)
2πKPETL

+
(

1
hairAo

)

−1

(3)
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This heat transfer coefficient is comprised of inverse resistances based on the natural convection of
water within the reactor (assumed to be standing for estimative calculations), the conductive resistance
of the PET wall material at its given thickness, and the forced convection of air against the tubes
in crossflow.

The forced convective heat transfer coefficient of air in crossflow with a single cylinder was also
calculated using correlations from Churchill and Bernstein [30]:

NuD1 = 0.3 +


0.62ReD

1
2 Pr

1
3[

1 + (0.4/Pr)
2
3

] 1
4


1 + ( ReD

282, 000

) 5
8


4
5

(4)

The Nusselt number calculated for a single tube
(
NuD1

)
served as a precursor to a more accurate

Nusselt number based on the PBR’s tube bank positioning. As they are positioned, the tubes act as a
staggered tube bank heat exchanger with N = 2 (number of rows) (see Figure 6).
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Figure 6. Top down view of the manifold of the cyclic flow PBR tube bank. ST and SL are measured
factors used in determining the forced convection heat transfer coefficient of a staggered tube bank
heat exchanger.

Taking into account the staggered arrangement of the tubes provided for a final Nusselt number
and forced convection heat transfer coefficient using the equation shown below and those in the
Appendices A and B. Correlations used for the staggered tube bank Nusselt number were taken from
Mills [31]:

NuD = 1 +
(N − 1) Φ NuD1

N
(5)
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Figure 7 demonstrates the dominance of the forced convection coefficient of air in a range of
overall heat transfer coefficients. The range of U dictated by wind speed at a given temperature is
large, corresponding to values of ~19–64 W m−2 K−1. At a wind speed of 1.36 m s−1, the average wind
speed at the East Bend Station for the year 2015 [27], the value of the overall heat transfer coefficient
for the cyclic flow PBR was calculated to be 22.2 W m−2 K−1.Energies 2019, 12, x FOR PEER REVIEW 8 of 19 

 

 
Figure 7. U (W m–2 K–1) vs. ambient temperature at a range of wind speeds. 

3.4. Data-Based Heat Transfer Model 

The data-based model, based on empirical real-time data collected at the East Bend Station 
during the 2015 growing season, was constructed using a linearization of the overall heat transfer 
equation. Equation (6) is a steady state “snapshot” estimation of Equation (2). With minimal algebraic 
rearrangement, Equation (2) becomes: ∆𝑇∆𝑡 = 𝑈𝐴(𝑇 − 𝑇 ) 𝑚 𝐶𝑝 + 𝑚 𝐶𝑝 (𝑇 − 𝑇 ) 𝑚 𝐶𝑝 + 𝑚 𝜆 (𝑦 − 𝑦 )  𝑚 𝐶𝑝+ ℱ 𝐴𝜎 𝑇 − 𝑇𝑚 𝐶𝑝  

(6) 

and is linearized by equations given in the appendix. Figure 8 depicts the resulting plot of ∆𝑇 /∆𝑡 
against 𝑇 − 𝑇 . 

Figure 7. U (W m−2 K−1) vs. ambient temperature at a range of wind speeds.

3.4. Data-Based Heat Transfer Model

The data-based model, based on empirical real-time data collected at the East Bend Station
during the 2015 growing season, was constructed using a linearization of the overall heat transfer
equation. Equation (6) is a steady state “snapshot” estimation of Equation (2). With minimal algebraic
rearrangement, Equation (2) becomes:(

∆TR
∆t

)
=

UA(TR−T∞)
mRCpR

+

[
.

mFGCpFG(Tin−Tout)
mRCpR

+
.

mFGλH2O
(
yH2OIN−yH2OOUT

)
mRCpR

+
F12Aσ(Twall

4
−Tsun

4)
mRCpR

] (6)

and is linearized by equations given in the Appendices A and B. Figure 8 depicts the resulting plot of
∆TR/∆t against TR − T∞.
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A simplified equation for the change in reactor temperature over time versus the instantaneous
difference in reactor and ambient temperatures yields:(∆TR

∆t

)
= −0.000255(TR − T∞) + 0.000995 (7)

On the basis of the slope in Figure 8, Equation (7) was used to extrapolate an overall heat transfer
coefficient of 24.8 W m−2 K−1 using a reactor surface area of 48.9 m2, an assumed internal reactor
mass of 1136 kg, and a heat capacity of 4180 J kg−1 K−1. This value for U (W m−2 K−1) provided by
the data-based model is well within the range of 19–64 W m−2 K−1 supplied by the tabulated model
and is extremely close to the overall heat transfer coefficient provided by the tabulated model of
22.2 W m−2 K−1 at a wind speed of 1.36 m s−1.

3.5. Cooling Times

In order to determine the cooling time based on the data-based model, summary methods were
used employing the data-based linear correlation summation:

∆tcooling =

(TR=120C)∑
i=(TR=250C,TR−1)

∆ti =

(TR=120C)∑
i=(TR=250C,TR−1)

TRi − TRi−1

m
(
TRi − T∞

)
+ b

(8)

Time-temperature tables [32] were used to interpolate cooling times for the tabulated model at a
range of wind speeds as shown in Figure 9. Cooling times associated with the data-based model were
calculated using ambient temperatures (T∞) and wind speeds at ranges of respectively 0–12 ◦C and
2–8 m s−1. From this follows that all of the calculated cooling times are less than that of the standard
PBR cycle time of 6 h.
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Figure 9. Reactor cooling times from both the tabulated and data-based heat transfer models. “U from
Data” denotes cooling times based on the data-based model. All other cooling times are calculated
from the tabulated model at different wind speeds.

3.6. Energy Penalties

In order to quantify the energy penalty associated with the increase in cycling frequency required
for heating the algae culture, the feed pump work duty was first calculated for the base case, i.e., cycling
every six hours without heating. This was found to be 0.22 MWh day−1, based on a techno-economic
analysis conducted for a 1 MW coal-fired power plant as reported previously [33]. The feed pump duty
associated with increased cycling was then calculated assuming that additional pump requirements
would be fulfilled by the installation of multiple, identical pumps. The pump duty associated with the
transportation of circulating water from the heated water stream to the PBR was quantified assuming a
stainless-steel pipe with a pipe diameter of 0.15 m, traveling a distance of 100 m. The latter is a rough
estimation of the current distance between the circulating water pipeline and the cyclic flow PBR at the
East Bend Station.

As shown in Figure 10, the percent increase in system energy consumption ranges from 18%–103%
at the given wind speed and temperature. One important factor to note is that solar gain is not
accounted for in the tabulated model, hence it is not accounted for in the corresponding plots shown
in Figure 10. However, actual solar gain is implicit in the data collected at the East Bend Station
used in creating the second model. Despite these stark differences in method, both models produced
strikingly similar sets of heat transfer coefficients. This implies that one could use the lines in Figure 9,
contributed by the tabulated model, as a metric for increased energy use for any PBR in colder climates.
If need be, a short dataset of PBR and ambient temperatures could be collected at potential site locations
to provide the data needed to make a data-based model for verification.
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Figure 10. Energy increase requirement for operation with increased cycling for all pumps (additional
feed pumps plus pumps used for transport of heated circulating water). Power requirements shown
are based on cooling times calculated using various wind speeds from the tabulated model and from
the heat transfer coefficient derived in the data-based model.

As shown in Figure 11, CO2 capture is decreased as a result of the energy consumption associated
with increased liquid pumping both for the algae culture and circulating water. Instantaneous CO2

capture penalties associated with heat integration operation are significant. During cold temperatures,
keeping the algae culture at or above 12 ◦C has the potential to require six times the amount of liquid
pumping as compared with the normal operation of the PBR without any heat integration. At ambient
temperatures of 0–4 ◦C, the reduction in CO2 capture ranges from 55%–70%. However, as temperatures
approach freezing levels, reductions in CO2 capture do not reach 100%, allowing for the overall process
to remain carbon negative.
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Figure 11. Reduction in overall CO2 capture vs. ambient temperature for a photobioreactor with
operating heat integration equipment. Reduction in CO2 capture values are instantaneous energy
penalties associated with the operation of heat integration equipment and calculated using the overall
heat transfer coefficient derived from the data-based model.

3.7. Techno-Economic Analysis

A techno-economic analysis was performed to ascertain the financial penalties associated with
the installation and operation of heat integration equipment. Calculations did not factor in labor or
the cost of capital. We considered the capital expense of equipment purchases and the operating
expense associated with heat integration equipment operation. Heat exchangers were assumed to be in
close proximity to the photobioreactor system. The pump duty associated with taking a slipstream of
circulating water to the heat exchanger was calculated, as per Section 3.6. Assumptions for capital cost
per square meter and biomass production cost (including OPEX) were taken from Crocker et al. [33]
and were reported as $70 m−2 and $875 tonne−1, respectively. These numbers were used as a baseline
for comparison of systems with and without heat integration equipment.

As shown in Figure 12, there are dramatic increases in capital expenditures (CAPEX) associated
with the purchase of the heat integration equipment, which includes extra polypropylene for feed
tanks, additional pumps and shell tube heat exchangers. The majority of the increase in total CAPEX
lies in the purchase of heat exchangers, which alone increases the CAPEX by a factor of six. Given the
modular nature of the PBR system, heat integration would require purchasing and installing six times
the number of liquid pumps normally required. The majority of these pumps, however, five out of six,
would sit idle for most of the year (240 days). Overall, the purchase of heat integration equipment
alone increases total CAPEX by a factor of nine.
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Figure 12. Capital expenditures (CAPEX) for a PBR system with and without installed heat integration
equipment. Both PBR systems were sized for a 1 MW power plant. Capital costs ($ m−2) were calculated
assuming a baseline production cost of $70 m−2, which includes the cost of equipment.

The production cost for one ton of biomass is reduced with a longer growing season, as displayed
in Figure 13, where the production cost for a system in Florida (assumed growing season of 300 days) is
compared with the same system in Kentucky (240 day growing season) under the same carbon capture
and growth assumptions. In Kentucky and similar geographic locations, extending the growing
season by 60 days using heat integration would almost triple the cost of biomass production, with the
majority of this increase in production cost being expenditures associated with the purchase of heat
integration equipment. All of the OPEX increases associated with heat integration correspond to
increases in energy costs due to extra liquid pumping and were found to be negligible in comparison
to the increases in CAPEX. Assumptions for growing season lengths were made based on publicly
available solar data [27,34].
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Figure 13. Cost of biomass production in $ ton−1 for three separate PBRs, each at a 1 MW power plant.
The first case corresponds to Kentucky, the second to Florida, and the third to the same PBR in Kentucky
with heat integration. Numbers include capital and operating cost over a 30 year amortization period
assuming a baseline biomass production cost of $875 tonne−1. The cost of capital is not included.

It is important to note that numbers for heat integration in Figure 13 reflect an assumed productivity
of 0.17 g L−1 day−1, based on field data [11], during the 60 day extension to the growing season.
In reality, the productivity would most likely be lower than that during colder months. That is to
say, the numbers seen for heat integration in Figure 13 represent a best-case scenario, given that light
limitations during the 60 day extension would likely limit the algae productivity to values less than
0.17 g L−1 day−1.

4. Conclusions

In order to ascertain the feasibility of using waste heat from a combustion power plant to heat
algae cultures in colder climates, two heat transfer models were constructed to quantify PBR cooling
times in colder climates. The tabulated model, which is based on tabulated data material properties
and the physical orientation of the PBR tubes, gave an overall range of heat transfer coefficients of
19–64 W m−2 K−1 at a wind speed range of 1–10 m s−1 and a value of 22.2 W m−2 K−1 at a wind speed of
1.36 m s−1 (the average wind speed at the East Bend Station for the year 2015). The data-based model,
which was based on data collected from the PBR at the East Bend Station from April to September 2015,
yielded an overall heat transfer coefficient of 24.8 W m−2 K−1. Energy penalties associated with waste
heat utilization were found to incur an 18%–103% increase in energy consumption at given temperature
and wind speeds with a CO2 capture reduction range of 22%–70%. Although the energy penalties
involved with heat integration are significant, the overall process retains a net-positive CO2 capture
rate. Overall, heating algae cultures as described are thermodynamically and technologically feasible.
However, a techno-economic analysis shows that the purchase of the heat integration equipment
increased capital expenditures by a factor of nine and increased the cost of annual biomass production
by a factor of three. For this particular scenario, the increase in CAPEX associated with the purchase of
heat integration equipment incurs an increase in biomass production cost that is untenable. Moreover,
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without dramatic decreases in the cost of heat integration equipment, it is unlikely that this process
would be economically viable at any scale. In an industrial setting, extending the growing season for
60 days does not justify the purchase and installation of heat integration equipment.
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Appendix A. Supplementary Data

Appendix A.1. Linearization Equations
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Appendix A.2. Correlating Equations for Nusselt Number for Staggered Tube Bank Heat Exchanger
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Table A1. Inputs and assumptions used when calculating increases in CAPEX and OPEX associated
with heat integration.

Input Value Units Source

PBR liquid flow rate 500 L min−1 Crocker et al. [33]

Required flow rate of circulating
water 900 L min−1 Calculated

Capital cost of installed PBR 70 $ m−2 Crocker et al. [33]

Baseline biomass production cost 875 $ tonne−1 Crocker et al. [33]

Algae growth rate 0.17 g L−1 d−1 Crocker et al. [33]

Electricity price 0.02 $ (Kw-hr)−1 0.5 ×KY industrial rate. www.eia.gov

Polypropylene cost 1100 $ tonne−1 www.icis.com (Nov. 2018)

Pump cost 2500 $ unit−1 Grainger, Inc.

Heat exchanger cost 33,000 $ unit−1 SHECO Inc.

Heat exchanger transfer rate 734 W m−2 K−1 SHECO Inc.

PBR pump duty 37.6 W unit−1 Crocker et al. [33]

Circulating water temperature 38 C Duke Energy

Power plant CO2 emission rate 0.948 tonne CO2 MWh−1 Crocker et al. [33]

Appendix B. Nomenclature

A combined surface area of PBR tubes (m−2)
Ai inner tube wall area (m−2)
Ao outer tube wall area (m−2)
CpFG heat capacity of flue gas (J kg−1 K−1)
CpR heat capacity of algae culture in the PBR (J k−1 K−1)
D diameter of tube (m)
g acceleration of gravity (m s−2)
Gr Grassoff number (dimensionless)
hair convection heat transfer coefficient for air (W m−2 K−1)
hwater convection heat transfer coefficient for water (W m−2 K−1)
L length of tube (m)
.

mFG mass flow rate of flue gas (kg s−1)
mR mass of algae culture in the PBR (kg)
Nu Nusselt number (dimensionless)
NuD Nusselt number for cylinder (dimensionless)
NuD1 Nusselt number for tube in staggered tube bank (dimensionless)
Pr Prandolt number (dimensionless)
PL defined as SL

D (dimensionless)
PT defined as ST

D (dimensionless)
qr heat inside tube (W)
qU heat transferred through tube wall (W)
qFG heat contributed by flue gas injection (W)
qλ heat as phase change of water in bubble column gas (W)
qs heat as solar gain (W)
ri inner tube radius (m)
ro outer tube radius (m)
RHin relative humidity of gas into PBR (dimensionless)
RHout relative humidity of gas out of PBR (dimensionless)
∆t time (s) (hr)
TR temperature inside the PBR (K)

www.eia.gov
www.icis.com
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T∞ ambient air temperature (K)
Ra Rayleigh number (dimensionless)
Re Reynolds number (dimensionless)
ReD Reynolds number for air in crossflow over cylinder (dimensionless)
St staggered tube bank line center distance (m)
SL staggered tube bank row center distance (m)
β coefficient of thermal expansion (K−1)
F12 dimensionless constant
λH2O latent heat of vaporization of water (J kg−1)
µ viscosity of water (Pa×s)
Φ defined as 1 + 2

3PL
(dimensionless)

σ Stefan–Boltzmann constant (W m−2 K−4)
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