329 research outputs found

    Immersed boundary-finite element model of fluid-structure interaction in the aortic root

    Get PDF
    It has long been recognized that aortic root elasticity helps to ensure efficient aortic valve closure, but our understanding of the functional importance of the elasticity and geometry of the aortic root continues to evolve as increasingly detailed in vivo imaging data become available. Herein, we describe fluid-structure interaction models of the aortic root, including the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the sinotubular junction, that employ a version of Peskin's immersed boundary (IB) method with a finite element (FE) description of the structural elasticity. We develop both an idealized model of the root with three-fold symmetry of the aortic sinuses and valve leaflets, and a more realistic model that accounts for the differences in the sizes of the left, right, and noncoronary sinuses and corresponding valve cusps. As in earlier work, we use fiber-based models of the valve leaflets, but this study extends earlier IB models of the aortic root by employing incompressible hyperelastic models of the mechanics of the sinuses and ascending aorta using a constitutive law fit to experimental data from human aortic root tissue. In vivo pressure loading is accounted for by a backwards displacement method that determines the unloaded configurations of the root models. Our models yield realistic cardiac output at physiological pressures, with low transvalvular pressure differences during forward flow, minimal regurgitation during valve closure, and realistic pressure loads when the valve is closed during diastole. Further, results from high-resolution computations demonstrate that IB models of the aortic valve are able to produce essentially grid-converged dynamics at practical grid spacings for the high-Reynolds number flows of the aortic root

    Improved Understanding of Atomic Ordering in Y4SixAl2- xO9- xNxMaterials Using a Combined Solid-State NMR and Computational Approach

    Get PDF
    Ceramics based around silicon aluminum oxynitrides are of both fundamental structural chemistry and technological interest. Certain oxynitride crystal structures allow very significant compositional variation through extensive Si/N exchange for Al/O, which implies a degree of atomic ordering. In this study, solid-state 29Si MAS NMR and variable field 1D and 2D 27Al MAS NMR measurements are combined with density functional theory calculations of both the structural and NMR interaction parameters for various points across the Y4Si2O7N2-Y4Al2O9 compositional range. This series provides numerous possibilities for significant variation of atomic ordering in the local ditetrahedral (Si,Al)2O7-xNx units. The two slightly structurally inequivalent aluminum sites in Y4Al2O9 are unambiguously assigned to the observed resonances. Computational findings on Y4Si2O7N2 demonstrate that the single observed 29Si NMR resonance covers a range of local inequivalent silicon environments. For the first time, the MAS NMR and neutron diffraction data from the Y4SiAlO8N structure have been directly reconciled, thus establishing aspects of atomic order and disorder that characterize this system. This comparison suggests that, although the diffraction data indicates long-range structural order supporting a highly crystalline character, the short-range information afforded by the solid-state NMR measurements indicates significant atomic disorder throughout the (Si,Al)2O7-xNx units

    ALD-R491 regulates vimentin filament stability and solubility, cell contractile force, cell migration speed and directionality

    Get PDF
    Metastasizing cells express the intermediate filament protein vimentin, which is used to diagnose invasive tumors in the clinic. However, the role of vimentin in cell motility, and if the assembly of non-filamentous variants of vimentin into filaments regulates cell migration remains unclear. We observed that the vimentin-targeting drug ALD-R491 increased the stability of vimentin filaments, by reducing filament assembly and/or disassembly. ALD-R491-treatment also resulted in more bundled and disorganized filaments and an increased pool of non-filamentous vimentin. This was accompanied by a reduction in size of cell-matrix adhesions and increased cellular contractile forces. Moreover, during cell migration, cells showed erratic formation of lamellipodia at the cell periphery, loss of coordinated cell movement, reduced cell migration speed, directionality and an elongated cell shape with long thin extensions at the rear that often detached. Taken together, these results indicate that the stability of vimentin filaments and the soluble pool of vimentin regulate the speed and directionality of cell migration and the capacity of cells to migrate in a mechanically cohesive manner. These observations suggest that the stability of vimentin filaments governs the adhesive, physical and migratory properties of cells, and expands our understanding of vimentin functions in health and disease, including cancer metastasis

    Countering Extremists on Social Media:Challenges for Strategic Communication and Content Moderation

    Get PDF
    Extremist exploitation of social media platforms is an important regulatory question for civil society, government, and the private sector. Extremists exploit social media for a range of reasons-from spreading hateful narratives and propaganda to financing, recruitment, and sharing operational information. Policy responses to this question fit under two headings, strategic communication and content moderation. At the center of both of these policy responses is a calculation about how best to limit audience exposure to extremist narratives and maintain the marginality of extremist views, while being conscious of rights to free expression and the appropriateness of restrictions on speech. This special issue on "Countering Extremists on Social Media: Challenges for Strategic Communication and Content Moderation" focuses on one form of strategic communication, countering violent extremism. In this editorial we discuss the background and effectiveness of this approach, and introduce five articles which develop multiple strands of research into responses and solutions to extremist exploitation of social media. We conclude by suggesting an agenda for future research on how multistakeholder initiatives to challenge extremist exploitation of social media are conceived, designed, and implemented, and the challenges these initiatives need to surmount

    Comprehensive lung injury pathology induced by mTOR inhibitors

    Get PDF
    Molecular Targets in Oncology[Abstract] Interstitial lung disease is a rare side effect of temsirolimus treatment in renal cancer patients. Pulmonary fibrosis is characterised by the accumulation of extracellular matrix collagen, fibroblast proliferation and migration, and loss of alveolar gas exchange units. Previous studies of pulmonary fibrosis have mainly focused on the fibro-proliferative process in the lungs. However, the molecular mechanism by which sirolimus promotes lung fibrosis remains elusive. Here, we propose an overall cascade hypothesis of interstitial lung diseases that represents a common, partly underlying synergism among them as well as the lung pathogenesis side effects of mammalian target of rapamycin inhibitors

    Representational predicaments for employees: Their impact on perceptions of supervisors\u27 individualized consideration and on employee job satisfaction

    Get PDF
    A representational predicament for a subordinate vis-à-vis his or her immediate superior involves perceptual incongruence with the superior about the subordinate\u27s work or work context, with unfavourable implications for the employee. An instrument to measure the incidence of two types of representational predicament, being neglected and negative slanting, was developed and then validated through an initial survey of 327 employees. A subsequent substantive survey with a fresh sample of 330 employees largely supported a conceptual model linking being neglected and negative slanting to perceptions of low individualized consideration by superiors and to low overall job satisfaction. The respondents in both surveys were all Hong Kong Chinese. Two case examples drawn from qualitative interviews illustrate and support the conceptual model. Based on the research findings, we recommend some practical exercises to use in training interventions with leaders and subordinates. © 2013 Copyright Taylor and Francis Group, LLC

    History of clinical transplantation

    Get PDF
    How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York

    Depth Of Maximum Of Air-shower Profiles At The Pierre Auger Observatory. I. Measurements At Energies Above 1017.8ev

    Get PDF
    901

    Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory in Malargüe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data
    corecore