112 research outputs found
Benefits of a Single-Person Spacecraft for Weightless Operations
Historically, less than 20 percent of crew time related to extravehicular activity (EVA) is spent on productive external work.1 A single-person spacecraft with 90 percent efficiency provides productive new capabilities for maintaining the International Space Station (ISS), exploring asteroids, and servicing telescopes or satellites. With suits, going outside to inspect, service or repair a spacecraft is time-consuming, requiring pre-breathe time, donning a fitted space suit, and pumping down an airlock. For ISS, this is between 12.5 and 16 hours for each EVA, not including translation and work-site set up. The work is physically demanding requiring a day of rest between EVAs and often results in suit-induced trauma with frequent injury to astronauts fingers2. For maximum mobility, suits use a low pressure, pure oxygen atmosphere. This represents a fire hazard and requires pre-breathing to reduce the risk of decompression sickness (bends). With virtually no gravity, humans exploring asteroids cannot use legs for walking. The Manned Maneuvering Unit offers a propulsive alternative however it is no longer in NASA s flight inventory. FlexCraft is a single person spacecraft operating at the same cabin atmosphere as its host so there is no risk of the bends and no pre-breathing. This allows rapid, any-time access to space for repeated short or long EVAs by different astronauts. Integrated propulsion eliminates hand-over-hand translation or having another crew member operate the robotic arm. The one-size-fits-all FlexCraft interior eliminates the suit part inventory and crew time required to fit all astronauts. With a shirtsleeve cockpit, conventional displays and controls are used and because the work is not strenuous no rest days are required. Furthermore, there is no need for hand tools because manipulators are equipped with force multiplying end-effectors that can deliver the precise torque for the job
Low Cost Space Demonstration for a Single-Person Spacecraft
This paper introduces a concept for a single-person spacecraft and presents plans for flying a low-cost, robotic demonstration mission. Called FlexCraft, the vehicle integrates propulsion and robotics into a small spacecraft that enables rapid, shirt-sleeve access to space. It can be flown by astronauts or tele-operated and is equipped with interchangeable manipulators used for maintaining the International Space Station (ISS), exploring asteroids, and servicing telescopes or satellites. Most FlexCraft systems are verified using ground facilities; however, a test in the weightless environment is needed to assess propulsion and manipulator performance. For this, a simplified, unmanned, version of FlexCraft is flown on a low-cost launch vehicle to a 350 km circular orbit. After separation from the upper stage, the vehicle returns to a target box mounted on the stage testing the propulsion and control capability. The box is equipped with manipulator test items that are representative of tasks performed on ISS, asteroid missions, or for satellites servicing. Nominal and off-nominal operations are conducted over 3 days then the vehicle re-enters the atmosphere without becoming a debris hazard. From concept to management to operations, the FlexCraft demonstration is designed to be low cost project that is launched within three years. This is possible using a simplified test configuration that eliminates nine systems unique to the operational version and by designing-to-availability. For example, the propulsion system is the same as the Manned Maneuvering Unit because it capable, simple, human-rated and all components or equivalent parts are available. A description of the launch vehicle options, mission operations, configuration, and demonstrator subsystems is presented
A density-functional approach to fermionization in the 1D Bose gas
A time-dependent Kohn-Sham scheme for 1D bosons with contact interaction is
derived based on a model of spinor fermions. This model is specifically
designed for the study of the strong interaction regime close to the Tonks gas.
It allows us to treat the transition from the strongly-interacting
Tonks-Girardeau to the weakly-interacting quasicondensate regime and provides
an intuitive picture of the extent of fermionization in the system. An
adiabatic local-density approximation is devised for the study of
time-dependent processes. This scheme is shown to yield not only accurate
ground-state properties but also overall features of the elementary excitation
spectrum, which is described exactly in the Tonks-gas limit.Comment: 15 pages, 3 figures, misprints (of published version) correcte
Small Habitat Commonality Reduces Cost for Human Mars Missions
Most view the Apollo Program as expensive. It was. But, a human mission to Mars will be orders of magnitude more difficult and costly. Recently, NASA's Evolvable Mars Campaign (EMC) mapped out a step-wise approach for exploring Mars and the Mars-moon system. It is early in the planning process but because approximately 80% of the total life cycle cost is committed during preliminary design, there is an effort to emphasize cost reduction methods up front. Amongst the options, commonality across small habitat elements shows promise for consolidating the high bow-wave costs of Design, Development, Test and Evaluation (DDT&E) while still accommodating each end-item's functionality. In addition to DDT&E, there are other cost and operations benefits to commonality such as reduced logistics, simplified infrastructure integration and with inter-operability, improved safety and simplified training. These benefits are not without a cost. Some habitats are sub-optimized giving up unique attributes for the benefit of the overall architecture and because the first item sets the course for those to follow, rapidly developing technology may be excluded. The small habitats within the EMC include the pressurized crew cabins for the ascent vehicle
SKYLAB II - Making a Deep Space Habitat from a Space Launch System Propellant Tank
Called a "House in Space," Skylab was an innovative program that used a converted Saturn V launch vehicle propellant tank as a space station habitat. It was launched in 1973 fully equipped with provisions for three separate missions of three astronauts each. The size and lift capability of the Saturn V enabled a large diameter habitat, solar telescope, multiple docking adaptor, and airlock to be placed on-orbit with a single launch. Today, the envisioned Space Launch System (SLS) offers similar size and lift capabilities that are ideally suited for a Skylab type mission. An envisioned Skylab II mission would employ the same propellant tank concept; however serve a different mission. In this case, the SLS upper stage hydrogen tank is used as a Deep Space Habitat (DSH) for NASA s planned missions to asteroids, Earth-Moon Lagrangian point and Mars
Nonlinear Waves in Bose-Einstein Condensates: Physical Relevance and Mathematical Techniques
The aim of the present review is to introduce the reader to some of the
physical notions and of the mathematical methods that are relevant to the study
of nonlinear waves in Bose-Einstein Condensates (BECs). Upon introducing the
general framework, we discuss the prototypical models that are relevant to this
setting for different dimensions and different potentials confining the atoms.
We analyze some of the model properties and explore their typical wave
solutions (plane wave solutions, bright, dark, gap solitons, as well as
vortices). We then offer a collection of mathematical methods that can be used
to understand the existence, stability and dynamics of nonlinear waves in such
BECs, either directly or starting from different types of limits (e.g., the
linear or the nonlinear limit, or the discrete limit of the corresponding
equation). Finally, we consider some special topics involving more recent
developments, and experimental setups in which there is still considerable need
for developing mathematical as well as computational tools.Comment: 69 pages, 10 figures, to appear in Nonlinearity, 2008. V2: new
references added, fixed typo
Isolated starless cores in IRDCs in the Hi-GAL survey
In a previous paper we identified cores within infrared dark clouds (IRDCs).
We regarded those without embedded sources as the least evolved, and labelled
them starless. Here we identify the most isolated starless cores and model them
using a three-dimensional, multi-wavelength, Monte Carlo, radiative transfer
code. We derive the cores' physical parameters and discuss the relation between
the mass, temperature, density, size and the surrounding interstellar radiation
field (ISRF) for the cores. The masses of the cores were found not to correlate
with their radial size or central density. The temperature at the surface of a
core was seen to depend almost entirely on the level of the ISRF surrounding
the core. No correlation was found between the temperature at the centre of a
core and its local ISRF. This was seen to depend, instead, on the density and
mass of the core.Comment: 12 pages + appendix, 12 figures, 4 tables. Only a sample of images in
Appendix A is given due to size restrictions. Accepted by MNRA
Design of proteasome inhibitors with oral efficacy in vivo against Plasmodium falciparum and selectivity over the human proteasome
The Plasmodium falciparum proteasome is a potential antimalarial drug target. We have identified a series of amino-amide boronates that are potent and specific inhibitors of the P. falciparum 20S proteasome (Pf20S) beta5 active site and that exhibit fast-acting antimalarial activity. They selectively inhibit the growth of P. falciparum compared with a human cell line and exhibit high potency against field isolates of P. falciparum and Plasmodium vivax They have a low propensity for development of resistance and possess liver stage and transmission-blocking activity. Exemplar compounds, MPI-5 and MPI-13, show potent activity against P. falciparum infections in a SCID mouse model with an oral dosing regimen that is well tolerated. We show that MPI-5 binds more strongly to Pf20S than to human constitutive 20S (Hs20Sc). Comparison of the cryo-electron microscopy (EM) structures of Pf20S and Hs20Sc in complex with MPI-5 and Pf20S in complex with the clinically used anti-cancer agent, bortezomib, reveal differences in binding modes that help to explain the selectivity. Together, this work provides insights into the 20S proteasome in P. falciparum, underpinning the design of potent and selective antimalarial proteasome inhibitors
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
Source clustering in the Hi-GAL survey determined using a minimum spanning tree method
The aims are to investigate the clustering of the far-infrared sources from the Herschel infrared Galactic Plane Survey (Hi-GAL) in the Galactic longitude range of 71 to 67 deg. These clumps, and their spatial distribution, are an imprint of the original conditions within a molecular cloud. This will produce a catalogue of over-densities. Methods. The minimum spanning tree (MST) method was used to identify the over-densities in two dimensions. The catalogue was further refined by folding in heliocentric distances, resulting in more reliable over-densities, which are cluster candidates. Results. We found 1633 over-densities with more than ten members. Of these, 496 are defined as cluster candidates because of the reliability of the distances, with a further 1137 potential cluster candidates. The spatial distributions of the cluster candidates are different in the first and fourth quadrants, with all clusters following the spiral structure of the Milky Way. The cluster candidates are fractal. The clump mass functions of the clustered and isolated are statistically indistinguishable from each other and are consistent with Kroupa’s initial mass function
- …