17 research outputs found

    Strategies to improve retention in randomised trials

    Get PDF
    Acknowledgements We thank Jayne Tierney, Sally Stenning, Seeromanie Harding, Sarah Meredith, and Irwin Nazareth for their contributions to earlier versions of this review. We also thank all authors of included published studies who provided additional or unreported data and Principal investigators for data on studies in progress or completed and unpublished. This update was funded by a National Institute for Health Research (NIHR) Incentive Award Scheme 2019 Reference 130660. The Health Services Research Unit, University of Aberdeen receives core funding from the Chief Scientist Office of the Scottish Government Health Directorates. The views expressed in this review are those of the authors and do not necessarily reflect those of the NIHR, the Department of Health and Social Care or these other funders. Sources of support Internal sources: No sources of support supplied External sources: National Institue for Health Research Incentive Award, UK; This update was funded by a National Institue for Health Research Incentive Award [NIHR IA 130660].Peer reviewedPublisher PD

    Bioinformatics-Based Identification of Expanded Repeats: A Non-reference Intronic Pentamer Expansion in RFC1 Causes CANVAS

    Get PDF
    Genomic technologies such as next-generation sequencing (NGS) are revolutionizing molecular diagnostics and clinical medicine. However, these approaches have proven inefficient at identifying pathogenic repeat expansions. Here, we apply a collection of bioinformatics tools that can be utilized to identify either known or novel expanded repeat sequences in NGS data. We performed genetic studies of a cohort of 35 individuals from 22 families with a clinical diagnosis of cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Analysis of whole-genome sequence (WGS) data with five independent algorithms identified a recessively inherited intronic repeat expansion [(AAGGG)exp] in the gene encoding Replication Factor C1 (RFC1). This motif, not reported in the reference sequence, localized to an Alu element and replaced the reference (AAAAG)11 short tandem repeat. Genetic analyses confirmed the pathogenic expansion in 18 of 22 CANVAS-affected families and identified a core ancestral haplotype, estimated to have arisen in Europe more than twenty-five thousand years ago. WGS of the four RFC1-negative CANVAS-affected families identified plausible variants in three, with genomic re-diagnosis of SCA3, spastic ataxia of the Charlevoix-Saguenay type, and SCA45. This study identified the genetic basis of CANVAS and demonstrated that these improved bioinformatics tools increase the diagnostic utility of WGS to determine the genetic basis of a heterogeneous group of clinically overlapping neurogenetic disorders

    The phenotype of floating-harbor syndrome:clinical characterization of 52 individuals with mutations in exon 34 of SRCAP

    Get PDF
    Background\ud Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome.\ud \ud Methods and results\ud Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from 2 to 52 years. The facial phenotype and expressive language impairments were defining features within the group. Height measurements were typically between minus two and minus four standard deviations, with occipitofrontal circumferences usually within the average range. Thirty-three of the subjects (63%) had at least one major anomaly requiring medical intervention. We did not observe any specific phenotype-genotype correlations.\ud \ud Conclusions\ud This large cohort of individuals with molecularly confirmed FHS has allowed us to better delineate the clinical features of this rare but classic genetic syndrome, thereby facilitating the development of management protocols.The authors would like to thank the families for their cooperation and permission to publish these findings. SdM would like to thank Barto Otten. Funding was provided by the Government of Canada through Genome Canada, the Canadian Institutes of Health Research (CIHR) and the Ontario Genomics Institute (OGI-049), by Genome Québec and Genome British Columbia, and the Manton Center for Orphan Disease Research at Children’s Hospital Boston. KMB is supported by a Clinical Investigatorship Award from the CIHR Institute of Genetics. AD is supported by NIH grant K23HD073351. BBAdV and HGB were financially supported by the AnEUploidy project (LSHG-CT-2006-37627). This work was selected for study by the FORGE Canada Steering Committee, which consists of K. Boycott (University of Ottawa), J. Friedman (University of British Columbia), J. Michaud (University of Montreal), F. Bernier (University of Calgary), M. Brudno (University of Toronto), B. Fernandez (Memorial University), B. Knoppers (McGill University), M. Samuels (Université de Montréal), and S. Scherer (University of Toronto). We thank the Galliera Genetic Bank - “Telethon Genetic Biobank Network” supported by Italian Telethon grants (project no. GTB07001) for providing us with specimens

    Mutations in DCC cause isolated agenesis of the corpus callosum with incomplete penetrance

    Get PDF
    Brain malformations involving the corpus callosum are common in children with developmental disabilities. We identified DCC mutations in four families and five sporadic individuals with isolated agenesis of the corpus callosum (ACC) without intellectual disability. DCC mutations result in variable dominant phenotypes with decreased penetrance, including mirror movements and ACC associated with a favorable developmental prognosis. Possible phenotypic modifiers include the type and location of mutation and the sex of the individual

    The phenotype of Floating-Harbor syndrome: Clinical characterization of 52 individuals with mutations in exon 34 of SRCAP

    Get PDF
    Background: Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome. Methods and results. Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from

    Heterozygous mutations in HSD17B4 cause juvenile peroxisomal D-bifunctional protein deficiency

    No full text
    OBJECTIVE: To determine the genetic cause of slowly progressive cerebellar ataxia, sensorineural deafness, and hypergonadotropic hypogonadism in 5 patients from 3 different families. METHODS: The patients comprised 2 sib pairs and 1 sporadic patient. Clinical assessment included history, physical examination, and brain MRI. Linkage analysis was performed separately on the 2 sets of sib pairs using single nucleotide polymorphism microarrays, followed by analysis of the intersection of the regions. Exome sequencing was performed on 1 affected patient with variant filtering and prioritization undertaken using these intersected regions. RESULTS: Using a combination of sequencing technologies, we identified compound heterozygous mutations in HSD17B4 in all 5 affected patients. In all 3 families, peroxisomal D-bifunctional protein (DBP) deficiency was caused by compound heterozygosity for 1 nonsense/deletion mutation and 1 missense mutation. CONCLUSIONS: We describe 5 patients with juvenile DBP deficiency from 3 different families, bringing the total number of reported patients to 14, from 8 families. This report broadens and consolidates the phenotype associated with juvenile DBP deficiency

    Psychosocial Factors That Shape Patient and Carer Experiences of Dementia Diagnosis and Treatment : A Systematic Review of Qualitative Studies

    Get PDF
    Funding: This article presents independent research commissioned by the UK National Institute for Health Research (NIHR) under Research for Patient Benefit (Grant Reference Number PB-PG-0808-16024). The views expressed in this paper are those of the authors and not necessarily those of the NHS, the NIHR, nor the Department of Health. The sponsor of the study had no role in study design, data analysis, data interpretation or writing of the reportEarly diagnosis and intervention for people with dementia is increasingly considered a priority, but practitioners are concerned with the effects of earlier diagnosis and interventions on patients and caregivers. This systematic review evaluates the qualitative evidence about how people accommodate and adapt to the diagnosis of dementia and its immediate consequences, to guide practice. Methods and Findings: We systematically reviewed qualitative studies exploring experiences of community-dwelling individuals with dementia, and their carers, around diagnosis and the transition to becoming a person with dementia. We searched PubMed, PsychINFO, Embase, CINAHL, and the British Nursing Index (all searched in May 2010 with no date restrictions; PubMed search updated in February 2012), checked reference lists, and undertook citation searches in PubMed and Google Scholar (ongoing to September 2011). We used thematic synthesis to identify key themes, commonalities, barriers to earlier diagnosis, and support identified as helpful. We identified 126 papers reporting 102 studies including a total of 3,095 participants. Three overarching themes emerged from our analysis: (1) pathways through diagnosis, including its impact on identity, roles, and relationships; (2) resolving conflicts to accommodate a diagnosis, including the acceptability of support, focusing on the present or the future, and the use or avoidance of knowledge; and (3) strategies and support to minimise the impact of dementia. Consistent barriers to diagnosis include stigma, normalisation of symptoms, and lack of knowledge. Studies report a lack of specialist support particularly post-diagnosis. Conclusions: There is an extensive body of qualitative literature on the experiences of community-dwelling individuals with dementia on receiving and adapting to a diagnosis of dementia. We present a thematic analysis that could be useful to professionals working with people with dementia. We suggest that research emphasis should shift towards the development and evaluation of interventions, particularly those providing support after diagnosis.Peer reviewedFinal Published versio

    Somatic GNAQ mutation in the forme fruste of Sturge-Weber syndrome

    Get PDF
    Objective: To determine whether the GNAQ R183Q mutation is present in the forme fruste cases of Sturge-Weber syndrome (SWS) to establish a definitive molecular diagnosis. Methods: We used sensitive droplet digital PCR (ddPCR) to detect and quantify the GNAQ mutation in tissues from epilepsy surgery in 4 patients with leptomeningeal angiomatosis; none had ocular or cutaneous manifestations. Results: Low levels of the GNAQ mutation were detected in the brain tissue of all 4 cases-ranging from 0.42% to 7.1% frequency-but not in blood-derived DNA. Molecular evaluation confirmed the diagnosis in 1 case in which the radiologic and pathologic data were equivocal. Conclusions: We detected the mutation at low levels, consistent with mosaicism in the brain or skin (1.0%-18.1%) of classic cases. Our data confirm that the forme fruste is part of the spectrum of SWS, with the same molecular mechanism as the classic disease and that ddPCR is helpful where conventional diagnosis is uncertain

    Cornelia de Lange syndrome in diverse populations

    Get PDF
    Cornelia de Lange syndrome (CdLS) is a dominant multisystemic malformation syndrome due to mutations in five genes—NIPBL, SMC1A, HDAC8, SMC3, and RAD21. The characteristic facial dysmorphisms include microcephaly, arched eyebrows, synophrys, short nose with depressed bridge and anteverted nares, long philtrum, thin lips, micrognathia, and hypertrichosis. Most affected individuals have intellectual disability, growth deficiency, and upper limb anomalies. This study looked at individuals from diverse populations with both clinical and molecularly confirmed diagnoses of CdLS by facial analysis technology. Clinical data and images from 246 individuals with CdLS were obtained from 15 countries. This cohort included 49% female patients and ages ranged from infancy to 37 years. Individuals were grouped into ancestry categories of African descent, Asian, Latin American, Middle Eastern, and Caucasian. Across these populations, 14 features showed a statistically significant difference. The most common facial features found in all ancestry groups included synophrys, short nose with anteverted nares, and a long philtrum with thin vermillion of the upper lip. Using facial analysis technology we compared 246 individuals with CdLS to 246 gender/age matched controls and found that sensitivity was equal or greater than 95% for all groups. Specificity was equal or greater than 91%. In conclusion, we present consistent clinical findings from global populations with CdLS while demonstrating how facial analysis technology can be a tool to support accurate diagnoses in the clinical setting. This work, along with prior studies in this arena, will assist in earlier detection, recognition, and treatment of CdLS worldwide.Supplementary Table 1 Participants with photographs in Figures 2-5 from 10 countries. Supplementary Table 2. Geometric and texture feature comparison of Global (combined African descent, Asian, Latin American, Caucasian) CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Table 3. Geometric and texture feature comparison of African descent CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Table 4. Geometric and texture feature comparison of Asian CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Table 5. Geometric and texture feature comparison of Latin American CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Table 6. Geometric and texture feature comparison of Caucasian CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Figure 1. Global: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selected. Supplementary Figure 2. African: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selected. Supplementary Figure 3. Asian: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selected. Supplementary Figure 4. Latin American: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selected. Supplementary Figure 5. Caucasian: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selectedPK and MM are supported by the Division of Intramural Research at the National Human Genome Research, NIH. Partial funding of this project was from a philanthropic gift from the Government of Abu Dhabi to the Children's National Health System. VS is supported by the Chulalongkorn Academic Advancement Into Its 2nd Century Project and the Thailand Research Fund. We would also like to acknowledge other clinicians who supported this work—MZ, JP, and GC. We would like to acknowledge that IDK, LD, MK, and SR are supported by the CdLS Center Endowed Funds at The Children's Hospital of Philadelphia and PO1 HD052860 from the NICHD. ES is supported by a fellowship from PKS Italia and PKSKids USA. LD was also supported by a postdoctoral training grant (T32 GM008638) from the NIGMS.http://wileyonlinelibrary.com/journal/ajmga2020-02-01hj2019Genetic
    corecore