32 research outputs found

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    COVID-19-Related Thrombotic and Bleeding Events in Adults With Congenital Heart Disease.

    Get PDF
    BACKGROUND Altered coagulation is a striking feature of COVID-19. Adult patients with congenital heart disease (ACHD) are prone to thromboembolic (TE) and bleeding complications. OBJECTIVES The purpose of this study was to investigate the prevalence and risk factors for COVID-19 TE/bleeding complications in ACHD patients. METHODS COVID-19-positive ACHD patients were included between May 2020 and November 2021. TE events included ischemic cerebrovascular accident, systemic and pulmonary embolism, deep venous thrombosis, myocardial infarction, and intracardiac thrombosis. Major bleeding included cases with hemoglobin drop >2 g/dl, involvement of critical sites, or fatal bleeding. Severe infection was defined as need for intensive care unit, endotracheal intubation, renal replacement therapy, extracorporeal membrane oxygenation, or death. Patients with TE/bleeding were compared to those without events. Factors associated with TE/bleeding were determined using logistic regression. RESULTS Of 1,988 patients (age 32 [IQR: 25-42] years, 47% male, 59 ACHD centers), 30 (1.5%) had significant TE/bleeding: 12 TE events, 12 major bleeds, and 6 with both TE and bleeding. Patients with TE/bleeding had higher in-hospital mortality compared to the remainder cohort (33% vs 1.7%; P < 0.0001) and were in more advanced physiological stage (P = 0.032) and NYHA functional class (P = 0.01), had lower baseline oxygen saturation (P = 0.0001), and more frequently had a history of atrial arrhythmia (P < 0.0001), previous hospitalization for heart failure (P < 0.0007), and were more likely hospitalized for COVID-19 (P < 0.0001). By multivariable logistic regression, prior anticoagulation (OR: 4.92; 95% CI: 2-11.76; P = 0.0003), cardiac injury (OR: 5.34; 95% CI: 1.98-14.76; P = 0.0009), and severe COVID-19 (OR: 17.39; 95% CI: 6.67-45.32; P < 0.0001) were independently associated with increased risk of TE/bleeding complications. CONCLUSIONS ACHD patients with TE/bleeding during COVID-19 infection have a higher in-hospital mortality from the illness. Risk of coagulation disorders is related to severe COVID-19, cardiac injury during infection, and use of anticoagulants

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    COVID-19-Related Thrombotic and Bleeding Events in Adults With Congenital Heart Disease

    No full text
    Background: Altered coagulation is a striking feature of COVID-19. Adult patients with congenital heart disease (ACHD) are prone to thromboembolic (TE) and bleeding complications. Objectives: The purpose of this study was to investigate the prevalence and risk factors for COVID-19 TE/bleeding complications in ACHD patients. Methods: COVID-19-positive ACHD patients were included between May 2020 and November 2021. TE events included ischemic cerebrovascular accident, systemic and pulmonary embolism, deep venous thrombosis, myocardial infarction, and intracardiac thrombosis. Major bleeding included cases with hemoglobin drop >2 g/dl, involvement of critical sites, or fatal bleeding. Severe infection was defined as need for intensive care unit, endotracheal intubation, renal replacement therapy, extracorporeal membrane oxygenation, or death. Patients with TE/bleeding were compared to those without events. Factors associated with TE/bleeding were determined using logistic regression. Results: Of 1,988 patients (age 32 [IQR: 25-42] years, 47% male, 59 ACHD centers), 30 (1.5%) had significant TE/bleeding: 12 TE events, 12 major bleeds, and 6 with both TE and bleeding. Patients with TE/bleeding had higher in-hospital mortality compared to the remainder cohort (33% vs 1.7%; P < 0.0001) and were in more advanced physiological stage (P = 0.032) and NYHA functional class (P = 0.01), had lower baseline oxygen saturation (P = 0.0001), and more frequently had a history of atrial arrhythmia (P < 0.0001), previous hospitalization for heart failure (P < 0.0007), and were more likely hospitalized for COVID-19 (P < 0.0001). By multivariable logistic regression, prior anticoagulation (OR: 4.92; 95% CI: 2-11.76; P = 0.0003), cardiac injury (OR: 5.34; 95% CI: 1.98-14.76; P = 0.0009), and severe COVID-19 (OR: 17.39; 95% CI: 6.67-45.32; P < 0.0001) were independently associated with increased risk of TE/bleeding complications. Conclusions: ACHD patients with TE/bleeding during COVID-19 infection have a higher in-hospital mortality from the illness. Risk of coagulation disorders is related to severe COVID-19, cardiac injury during infection, and use of anticoagulants

    Integrated Approaches to Environmental Planning and Management

    No full text
    corecore