139 research outputs found

    Advanced glycation end-products: Mechanics of aged collagen from molecule to tissue

    Get PDF
    Concurrent with a progressive loss of regenerative capacity, connective tissue aging is characterized by a progressive accumulation of Advanced Glycation End-products (AGEs). Besides being part of the typical aging process, type II diabetics are particularly affected by AGE accumulation due to abnormally high levels of systemic glucose that increases the glycation rate of long-lived proteins such as collagen. Although AGEs are associated with a wide range of clinical disorders, the mechanisms by which AGEs contribute to connective tissue disease in aging and diabetes are still poorly understood. The present study harnesses advanced multiscale imaging techniques to characterize a widely employed . in vitro model of ribose induced collagen aging and further benchmarks these data against experiments on native human tissues from donors of different age. These efforts yield unprecedented insight into the mechanical changes in collagen tissues across hierarchical scales from molecular, to fiber, to tissue-levels. We observed a linear increase in molecular spacing (from 1.45. nm to 1.5. nm) and a decrease in the D-period length (from 67.5. nm to 67.1. nm) in aged tissues, both using the ribose model of . in vitro glycation and in native human probes. Multiscale mechanical analysis of . in vitro glycated tendons strongly suggests that AGEs reduce tissue viscoelasticity by severely limiting fiber-fiber and fibril-fibril sliding. This study lays an important foundation for interpreting the functional and biological effects of AGEs in collagen connective tissues, by exploiting experimental models of AGEs crosslinking and benchmarking them for the first time against endogenous AGEs in native tissue

    Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation

    Get PDF
    Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions ; (2) to elucidate the molecular basis of their biological effects ; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation

    Accelerated osteocyte senescence and skeletal fragility in mice with type 2 diabetes

    No full text

    Maillard reaction-mediated molecular damage to extracellular matrix and other tissue proteins in diabetes, aging and uremia.

    No full text
    Pentosidine is an advanced glycosylation end product and protein cross- link that results from the reaction of pentoses with proteins. Recent data indicate that long-term glycation of proteins with glucose also leads to pentosidine formation through sugar fragmentation. In this study, the relationship between the severity of diabetic complications and pentosidine formation was investigated in collagen from skin-punch biopsies from 25 nondiabetic control subjects and 41 IDDM patients with diabetes duration >17 yr. Pentosidine was significantly elevated in all IDDM patients versus control subjects (P 0.05). A high correlation between pentosidine levels and long-wave collagen-linked fluorescence also was observed, suggesting that pentosidine is a generalized marker of accelerated tissue modification by the advanced glycosylation/Maillard reaction, which is enhanced in IDDM patients with severe complications

    Pentosidine: a molecular marker for the cumulative damage to proteins in diabetes, aging and uremia.

    No full text
    Collagen undergoes progressive browning with age and diabetes characterized by yellowing, fluorescence, and cross-linking. The present research was undertaken in order to investigate the nature of the collagen-linked fluorescence. Human collagen was exhaustively cleaved into peptides by enzymatic digestion. Upon purification, a highly fluorescent chromophore was identified and purified from old human collagen. Structure elucidation revealed the presence of an imidazo [4,5-b] pyridinium-type structure acting as a cross-link between arginine, lysine, and a pentose. This advanced glycosylation end-product and protein cross-link results from the reaction of pentoses with proteins and was named pentosidine. Further work indicated that long-term glycosylation of proteins with hexoses also leads to pentosidine formation through sugar fragmentation. The proposed mechanism of pentosidine formation involves the dehydration of the pentose-derived Amadori compound to form an intermediate which is attacked under base catalysis by the guanido group of arginine. The strict requriement for the Amadori rearrangement is uncertain. However, oxidation is definitely involved since pentosidine is not formed in the absence of oxygen. Five-carbon sugars contributing to pentosidine formation could be formed from larger sugars by oxidative fragmentation or from trioses, tetroses, and ketoses by condensation and/or reverse aldol reactions. Pentosidine increases exponentially in human skin at autopsy. Mean age-adjusted skin levels were significantly increased in subjects with uremia and especially in type 1 diabetes with uremia vs. controls. In skin biopsy, levels were significantly elevated in all diabetic (type 1) vs. control subjects. The highest degree of association was with the cumulative grade of diabetic complication (retinopathy, nephropathy, arterial stiffness, and joint stiffness). Pentosidine also forms in various proteins other than collagen, although to a much lesser extent. In blood, pentosidine is mainly associated with plasma proteins and is highly elevated during uremia. In the lens, it is associated with both water-soluble and -insoluble protein fractions and is especially elevated during brunescent cataract formation. The origin of pentosidine in vivo is uncertain. Evidence suggests that the pentoses are the most reactive sugars in pentosidine formation in vitro; however, the origin and importance of free pentoses in vivo, especially during the diabetic state, are not certain. Possible origins include hemolysis and/or a defect in the primary pentose metabolism. The more likely precursors of pentosidine are the hexoses; however, it is unclear whether they undergo oxidative fragmentation to form 5-carbon fragments in vivo. This contrasts with ascorbate, a very likely precursor, known to be oxidized to dehydroascorbate and 2,3-diketoglulonate and to fragment to pentoses in vivo. Pentosidine reflects a form of sugar-mediated cumulative damage to protein which increases with aging, diabetes, and uremia. The determination of pentosidine levels may be a useful marker of aging and the risk of developing diabetic complications. It may also be a biochemical end-point for the assessment of therapeutic interventions aimed at preventing or reversing the progression of diabetic complications
    • …
    corecore