12 research outputs found

    Evaluating Fatty Acid Amide Hydrolase as a Suitable Target for Sleep Promotion in a Transgenic TauP301S Mouse Model of Neurodegeneration

    Get PDF
    Sleep disruption is an expected component of aging and neurodegenerative conditions, including Alzheimer’s disease (AD). Sleep disruption has been demonstrated as a driver of AD pathology and cognitive decline. Therefore, treatments designed to maintain sleep may be effective in slowing or halting AD progression. However, commonly used sleep aid medications are associated with an increased risk of AD, highlighting the need for sleep aids with novel mechanisms of action. The endocannabinoid system holds promise as a potentially effective and novel sleep-enhancing target. By using pharmacology and genetic knockout strategies, we evaluated fatty acid amide hydrolase (FAAH) as a therapeutic target to improve sleep and halt disease progression in a transgenic Tau P301S (PS19) model of Tauopathy and AD. We have recently shown that PS19 mice exhibit sleep disruption in the form of dark phase hyperarousal as an early symptom that precedes robust Tau pathology and cognitive decline. Acute FAAH inhibition with PF3845 resulted in immediate improvements in sleep behaviors in male and female PS19 mice, supporting FAAH as a potentially suitable sleep-promoting target. Moreover, sustained drug dosing for 5–10 days resulted in maintained improvements in sleep. To evaluate the effect of chronic FAAH inhibition as a possible therapeutic strategy, we generated FAAH−/− PS19 mice models. Counter to our expectations, FAAH knockout did not protect PS19 mice from progressive sleep loss, neuroinflammation, or cognitive decline. Our results provide support for FAAH as a novel target for sleep-promoting therapies but further indicate that the complete loss of FAAH activity may be detrimental

    Regulation of mTORC1 Signaling by pH

    Get PDF
    BACKGROUND: Acidification of the cytoplasm and the extracellular environment is associated with many physiological and pathological conditions, such as intense exercise, hypoxia and tumourigenesis. Acidification affects important cellular functions including protein synthesis, growth, and proliferation. Many of these vital functions are controlled by mTORC1, a master regulator protein kinase that is activated by various growth-stimulating signals and inactivated by starvation conditions. Whether mTORC1 can also respond to changes in extracellular or cytoplasmic pH and play a role in limiting anabolic processes in acidic conditions is not known. METHODOLOGY/FINDINGS: We examined the effects of acidifying the extracellular medium from pH 7.4 to 6.4 on human breast carcinoma MCF-7 cells and immortalized mouse embryo fibroblasts. Decreasing the extracellular pH caused intracellular acidification and rapid, graded and reversible inhibition of mTORC1, assessed by measuring the phosphorylation of the mTORC1 substrate S6K. Fibroblasts deleted of the tuberous sclerosis complex TSC2 gene, a major negative regulator of mTORC1, were unable to inhibit mTORC1 in acidic extracellular conditions, showing that the TSC1-TSC2 complex is required for this response. Examination of the major upstream pathways converging on the TSC1-TSC2 complex showed that Akt signaling was unaffected by pH but that the Raf/MEK/ERK pathway was inhibited. Inhibition of MEK with drugs caused only modest mTORC1 inhibition, implying that other unidentified pathways also play major roles. CONCLUSIONS: This study reveals a novel role for the TSC1/TSC2 complex and mTORC1 in sensing variations in ambient pH. As a common feature of low tissue perfusion, low glucose availability and high energy expenditure, acidic pH may serve as a signal for mTORC1 to downregulate energy-consuming anabolic processes such as protein synthesis as an adaptive response to metabolically stressful conditions

    Remembering and forgetting in sleep: Selective synaptic plasticity during sleep driven by scaling factors Homer1a and Arc

    No full text
    Sleep is a conserved and essential process that supports learning and memory. Synapses are a major target of sleep function and a locus of sleep need. Evidence in the literature suggests that the need for sleep has a cellular or microcircuit level basis, and that sleep need can accumulate within localized brain regions as a function of waking activity. Activation of sleep promoting kinases and accumulation of synaptic phosphorylation was recently shown to be part of the molecular basis for the localized sleep need. A prominent hypothesis in the field suggests that some benefits of sleep are mediated by a broad but selective weakening, or scaling-down, of synaptic strength during sleep in order to offset increased excitability from synaptic potentiation during wake. The literature also shows that synapses can be strengthened during sleep, raising the question of what molecular mechanisms may allow for selection of synaptic plasticity types during sleep. Here I describe mechanisms of action of the scaling factors Arc and Homer1a in selective plasticity and links with sleep need. Arc and Homer1a are induced in neurons in response to waking neuronal activity and accumulate with time spent awake. I suggest that during sleep, Arc and Homer1a drive broad weakening of synapses through homeostatic scaling-down, but in a manner that is sensitive to the plasticity history of individual synapses, based on patterned phosphorylation of synaptic proteins. Therefore, Arc and Homer1a may offer insights into the intricate links between a cellular basis of sleep need and memory consolidation during sleep

    Endosomal pH in neuronal signaling and synaptic transmission: role of Na+/H+ exchanger NHE5

    No full text
    Neuronal precursor cells extend multiple neurites during development, one of which extends to form an axon whereas others develop into dendrites. Chemical stimulation of N-methyl D-aspartate (NMDA) receptor in fully-differentiated neurons induces projection of dendritic spines, small spikes protruding from dendrites, thereby establishing another layer of polarity within the dendrite. Neuron-enriched Na+/H+ exchanger NHE5 contributes to both neurite growth and dendritic spine formation. In resting neurons and neuro-endocrine cells, neuron-enriched NHE5 is predominantly associated with recycling endosomes where it colocalizes with nerve growth factor (NGF) receptor TrkA. NHE5 potently acidifies the lumen of TrkA-positive recycling endosomes and regulates cell-surface targeting of TrkA, whereas chemical stimulation of NMDA receptor rapidly recruits NHE5 to dendritic spines, alkalinizes dendrites and down-regulates the dendritic spine formation. Possible roles of NHE5 in neuronal signaling via proton movement in subcellular compartments are discussed

    Sorting Nexin 27 regulates basal and activity-dependent trafficking of AMPARs

    No full text
    Activity-dependent changes in synaptic strength have long been postulated as cellular correlates of learning and memory. Long-term potentiation (LTP), a well characterized form of synaptic plasticity, is often expressed as an increase in the number of postsynaptic AMPAtype glutamate receptors (AMPARs). Although the precise molecular mechanisms governing LTP remain elusive, this study identifies one member of the sorting nexin family, Sorting Nexin 27 (SNX27), as a critical component in this process. The ability of sorting nexins to bind specific phospholipids as well as their propensity to form protein- protein complexes, points to a role for these proteins in membrane trafficking and protein sorting. Here, we demonstrate that SNX27 binds to AMPARs, and that this interaction is regulated in an activity-dependent manner. Furthermore, we provide evidence that SNX27 is synaptically enriched and its level of expression regulates targeting of AMPARs to the neuronal surface. Loss of SNX27 abolishes recruitment of surface AMPARs during chemical LTP. Collectively, our data suggest a role for SNX27 in modulating synaptic plasticity through regulated interaction with AMPARs

    Secretory Carrier Membrane Protein 2 Regulates Cell-surface Targeting of Brain-enriched Na+/H+ Exchanger NHE5*

    No full text
    NHE5 is a brain-enriched Na+/H+ exchanger that dynamically shuttles between the plasma membrane and recycling endosomes, serving as a mechanism that acutely controls the local pH environment. In the current study we show that secretory carrier membrane proteins (SCAMPs), a group of tetraspanning integral membrane proteins that reside in multiple secretory and endocytic organelles, bind to NHE5 and co-localize predominantly in the recycling endosomes. In vitro protein-protein interaction assays revealed that NHE5 directly binds to the N- and C-terminal cytosolic extensions of SCAMP2. Heterologous expression of SCAMP2 but not SCAMP5 increased cell-surface abundance as well as transporter activity of NHE5 across the plasma membrane. Expression of a deletion mutant lacking the SCAMP2-specific N-terminal cytosolic domain, and a mini-gene encoding the N-terminal extension, reduced the transporter activity. Although both Arf6 and Rab11 positively regulate NHE5 cell-surface targeting and NHE5 activity across the plasma membrane, SCAMP2-mediated surface targeting of NHE5 was reversed by dominant-negative Arf6 but not by dominant-negative Rab11. Together, these results suggest that SCAMP2 regulates NHE5 transit through recycling endosomes and promotes its surface targeting in an Arf6-dependent manner
    corecore