1,200 research outputs found

    Comprehensive assessment of a peer mentor program for first-year students

    Get PDF
    College students who engage in first-year programs such as peer mentorship are correlated with higher achievement. Peer mentorship can also have a significant impact on students\u27 feelings of belonging to their campus community. This mixed-methods study will provide a comprehensive assessment of a Class Leader (CL) program. Data will include first-semester outcomes (i.e., first-term GPA; retention) for all students (N ~ 1850) and first-generation students as compared to non-participants, survey responses (n ~ 471) about students\u27 experiences with CLs and perceptions related to the program, and focus group data from students, CLs, and instructors at the end of the semester

    LoCuSS: The Near-Infrared Luminosity and Weak-Lensing Mass Scaling Relation of Galaxy Clusters

    Full text link
    We present the first scaling relation between weak-lensing galaxy cluster mass, MWLM_{WL}, and near-infrared luminosity, LKL_K. Our results are based on 17 clusters observed with wide-field instruments on Subaru, the United Kingdom Infrared Telescope, the Mayall Telescope, and the MMT. We concentrate on the relation between projected 2D weak-lensing mass and spectroscopically confirmed luminosity within 1Mpc, modelled as MWLLKbM_{WL} \propto L_{K}^b, obtaining a power law slope of b=0.830.24+0.27b=0.83^{+0.27}_{-0.24} and an intrinsic scatter of σlnMWLLK=105+8%\sigma_{lnM_{WL}|L_{K}}=10^{+8}_{-5}\%. Intrinsic scatter of ~10% is a consistent feature of our results regardless of how we modify our approach to measuring the relationship between mass and light. For example, deprojecting the mass and measuring both quantities within r500r_{500}, that is itself obtained from the lensing analysis, yields σlnMWLLK=105+7%\sigma_{lnM_{WL}|L_{K}}=10^{+7}_{-5}\% and b=0.970.17+0.17b=0.97^{+0.17}_{-0.17}. We also find that selecting members based on their (J-K) colours instead of spectroscopic redshifts neither increases the scatter nor modifies the slope. Overall our results indicate that near-infrared luminosity measured on scales comparable with r500r_{500} (typically 1Mpc for our sample) is a low scatter and relatively inexpensive proxy for weak-lensing mass. Near-infrared luminosity may therefore be a useful mass proxy for cluster cosmology experiments.Comment: 9 Pages, 5 Figures, 3 Tables. Submitted to MNRA

    LoCuSS : The Splashback Radius of Massive Galaxy Clusters and Its Dependence on Cluster Merger History

    Get PDF
    We present the direct detection of the splashback feature using the sample of massive galaxy clusters from the Local Cluster Substructure Survey (LoCuSS). This feature is clearly detected (above 5 sigma) in the stacked luminosity density profile obtained using the K-band magnitudes of spectroscopically confirmed cluster members. We obtained the best-fit model by means of Bayesian inference, which ranked models including the splashback feature as more descriptive of the data with respect to models that do not allow for this transition. In addition, we have assessed the impact of the cluster dynamical state on the occurrence of the splashback feature. We exploited the extensive multiwavelength LoCuSS data set to test a wide range of proxies for the cluster formation history, finding the most significant dependence of the splashback feature location and scale according to the presence or absence of X-ray emitting galaxy groups in the cluster infall regions. In particular, we report for the first time that clusters that do not show massive infalling groups present the splashback feature at a smaller clustercentric radius r (sp)/r (200,m ) = 1.158 +/- 0.071 than clusters that are actively accreting groups r (sp)/r (200,m ) = 1.291 +/- 0.062. The difference between these two subsamples is significant at 4.2 sigma, suggesting a correlation between the properties of the cluster potential and its accretion rate and merger history. Similarly, clusters that are classified as old and dynamically inactive present stronger signatures of the splashback feature, with respect to younger, more active clusters. We are directly observing how fundamental dynamical properties of clusters reverberate across vastly different physical scales.Peer reviewe

    The cellular and synaptic architecture of the mechanosensory dorsal horn

    Get PDF
    The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception

    BUDHIES - III : the fate of HI and the quenching of galaxies in evolving environments

    Get PDF
    In a hierarchical Universe clusters grow via the accretion of galaxies from the field, groups and even other clusters. As this happens, galaxies can lose and/or consume their gas reservoirs via different mechanisms, eventually quenching their star formation. We explore the diverse environmental histories of galaxies through a multiwavelength study of the combined effect of ram-pressure stripping and group 'processing' in Abell 963, a massive growing cluster at z = 0.2 from the Blind Ultra Deep HI Environmental Survey (BUDHIES). We incorporate hundreds of new optical redshifts (giving a total of 566 cluster members), as well as Subaru and XMM-Newton data from LoCuSS, to identify substructures and evaluate galaxy morphology, star formation activity, and HI content (via HI deficiencies and stacking) out to 3 x R-200. We find that Abell 963 is being fed by at least seven groups, that contribute to the large number of passive galaxies outside the cluster core. More massive groups have a higher fraction of passive and HI-poor galaxies, while low-mass groups host younger (often interacting) galaxies. For cluster galaxies not associated with groups we corroborate our previous finding that HI gas (if any) is significantly stripped via ram-pressure during their first passage through the intracluster medium, and find mild evidence for a starburst associated with this event. In addition, we find an overabundance of morphologically peculiar and/or star-forming galaxies near the cluster core. We speculate that these arise from the effect of groups passing through the cluster (post-processing). Our study highlights the importance of environmental quenching and the complexity added by evolving environments.Peer reviewe

    Exploring the mycobacteriophage metaproteome: Phage genomics as an educational platform

    Get PDF
    Bacteriophages are the most abundant forms of life in the biosphere and carry genomes characterized by high genetic diversity and mosaic architectures. The complete sequences of 30 mycobacteriophage genomes show them collectively to encode 101 tRNAs, three tmRNAs, and 3,357 proteins belonging to 1,536 "phamilies" of related sequences, and a statistical analysis predicts that these represent approximately 50% of the total number of phamilies in the mycobacteriophage population. These phamilies contain 2.19 proteins on average; more than half (774) of them contain just a single protein sequence. Only six phamilies have representatives in more than half of the 30 genomes, and only three - encoding tape-measure proteins, lysins, and minor tail proteins - are present in all 30 phages, although these phamilies are themselves highly modular, such that no single amino acid sequence element is present in all 30 mycobacteriophage genomes. Of the 1,536 phamilies, only 230 (15%) have amino acid sequence similarity to previously reported proteins, reflecting the enormous genetic diversity of the entire phage population. The abundance and diversity of phages, the simplicity of phage isolation, and the relatively small size of phage genomes support bacteriophage isolation and comparative genomic analysis as a highly suitable platform for discovery-based education. © 2006 Hatfull et al

    Detection of anti-correlation of hot and cold baryons in galaxy clusters

    Get PDF
    The largest clusters of galaxies in the Universe contain vast amounts of dark matter, plus baryonic matter in two principal phases, a majority hot gas component and a minority cold stellar phase comprising stars, compact objects, and low-temperature gas. Hydrodynamic simulations indicate that the highest-mass systems retain the cosmic fraction of baryons, a natural consequence of which is anti-correlation between the masses of hot gas and stars within dark matter halos of fixed total mass. We report observational detection of this anti-correlation based on 4 elements of a 9 x 9-element covariance matrix for nine cluster properties, measured from multi-wavelength observations of 41 clusters from the Local Cluster Substructure Survey. These clusters were selected using explicit and quantitative selection rules that were then encoded in our hierarchical Bayesian model. Our detection of anti-correlation is consistent with predictions from contemporary hydrodynamic cosmological simulations that were not tuned to reproduce this signal.Peer reviewe

    LoCuSS : scaling relations between galaxy cluster mass, gas, and stellar content

    Get PDF
    We present a simultaneous analysis of galaxy cluster scaling relations between weak-lensing mass and multiple cluster observables, across a wide range of wavelengths, that probe both gas and stellar content. Our new hierarchical Bayesian model simultaneously considers the selection variable alongside all other observables in order to explicitly model intrinsic property covariance and account for selection effects. We apply this method to a sample of 41 clusters at 0.15 <z <0.30, with a well-defined selection criteria based on RASS X-ray luminosity, and observations from Chandra/XMM, SZA, Planck, UKIRT, SUSS, and Subaru. These clusters have well-constrained weak-lensing mass measurements based on Subaru/SuprimeCam observations, which serve as the reference masses in our model. We present 30 scaling relation parameters for 10 properties. All relations probing the intracluster gas are slightly shallower than self-similar predictions, in moderate tension with prior measurements, and the stellar fraction decreases with mass. K-band luminosity has the lowest intrinsic scatter with a 95th percentile of 0.16, while the lowest scatter gas probe is gas mass with a fractional intrinsic scatter of 0.16 +/- 0.03. We find no distinction between the core-excised X-ray or high-resolution Sunyaev-Zel'dovich relations of clusters of different central entropy, but find with modest significance that higher entropy clusters have higher stellar fractions than their lower entropy counterparts. We also report posterior mass estimates from our likelihood model.Peer reviewe
    corecore