27 research outputs found

    Preliminary implementation for the new SPIRAL2 project control system

    Get PDF
    International audienceThe Spiral2 project consists of a new facility to provide high intensity rare ions beams. It is based on a primary beam driver accelerator (RFQ followed by a superconducting linac) and a rare ion production process delivering the beam either to a low energy experimental area or to the existing Ganil facility. From October this year, one ion source coupled with a first beam line section will be in test; then, the injector (ion and deuteron sources, RFQ) will be tested by the end of 2010 so the whole accelerator should be commissioned by the end of 2011; the first exotic beams being planned one year later. The accelerator control system design results from the collaboration between several institutes and Epics has been chosen as the basic framework. The paper therefore presents the main choices: MVME5500 CPUs, VME I/O boards, VxWorks, Siemens PLCs, Modbus field buses, EDM screens and Java applications, Linux PCs, use of a LabView/Epics gateway... Specific topics are the evaluation of the XAL environment, an Epics design to address the power supplies, an emittance measurement system, the development of a beam profiler interface and the investigation for a triggered acquisition system

    First step towards the new SPIRAL2 project control system

    Get PDF
    International audienceThe Spiral2 project at Ganil aims to produce rare ion beams using a Uranium carbide target fission process. The accelerator consists of a RFQ followed by a superconducting cavity linac and is designed to provide high intensity primary beams (deuterons, protons or heavy ions). The accelerator should be commissioned by the end of 2011; then, the first tests aiming to produce exotic beams are planned one year later. The control system will result of the collaboration between several institutes among which the Saclay Dapnia division yet having a good experience and knowledge with Epics. So and also because of its widely used functionalities, Epics has been chosen as the basic framework for the accelerator control and people from the other laboratories belonging to the collaboration are progressively acquiring a first experience with Epics. The paper first explains the organisation of the collaboration then it describes the basic hardware and software choices for the project. Some preliminary implementations are therefore given. As the project is still in its beginning phase, the paper ends by listing some interrogations not yet solved for the control system definition and opened for discussion

    The SPIRAL2 control system progress towards the commissioning phase

    Get PDF
    MOCOAAB03, http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/mocoaab03.pdfInternational audienceThe commissioning of the first phase of the Spiral2 Radioactive Ion Beams facility at Ganil will soon start, so requiring the control system components to be delivered in time. Yet, parts of the system were validated during preliminary tests performed with ions and deuterons beams at low energy. The control system development results from the collaboration between Ganil, CEA-IRFU, CNRS-IPHC laboratories, using appropriate tools and approach. Based on Epics, the control system follows a classical architecture. At the lowest level, Modbus/TCP protocol is considered as a field bus. Then, equipment are handled by IOCs (soft or VME/VxWorks) with a software standardized interface between IOCs and clients applications on top. This last upper layer consists of Epics standard tools, CSS/BOY user interfaces within the socalled CSSop Spiral2 context suited for operation and, for machine tunings, high level applications implemented by Java programs developed within a Spiral2 framework derived from the open-Xal one. Databases are used for equipment data and alarms archiving, to configure equipment and to manage the machine lattice and beam settings. A global overview of the system is therefore here proposed

    A Small but Efficient Collaboration for the Spiral2 Control System Development

    Get PDF
    http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/tucobab01.pdfThe Spiral2 radioactive ion beam facility to be commissioned in 2014 at Ganil (Caen) is built within international collaborations. This also concerns the control system development shared by three laboratories: Ganil has to coordinate the control and automated systems work packages, CEA/IRFU is in charge of the "injector" (sources and low energy beam lines) and the LLRF, CNRS/IPHC provides the emittancemeters and a beam diagnostics platform. Besides the technology Epics based, this collaboration, although being handled with a few people, nevertheless requires an appropriate and tight organization to reach the objectives given by the project. This contribution describes how, started in 2006, the collaboration for controls has been managed both from the technological point of view and the organizational one, taking into account not only the previous experience, technical background or skill of each partner, but also their existing working practices and "cultural" approaches. A first feedback comes from successful beam tests carried out at Saclay and Grenoble; a next challenge is the migration to operation, Ganil having to run Spiral2 as the other members are moving to new projects

    Performance studies of the CMS strip tracker before installation

    Get PDF
    Peer reviewe

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Control system of the CYRCé beamlines

    No full text
    International audienceThe first two extension beamlines from the CYRCé cyclotron have been developed and recently commissioned at IPHC Strasbourg. One beamline is devoted to radiobiological experiments, the PRECy project, while the other one is for testing silicon detector modules in the framework of the CMS experiment. The development of the control system of these beamlines is reported in this paper

    Development of the Future Spiral2 Control System

    No full text
    International audienceThe Spiral2 facility aims to provide rare ions beams using the ISOL method. It consists of a driver accelerator followed by the rare ion production process coupled with the existing Ganil machine. From the beginning of this year, one ion source followed by the first beam line section has been in test hence implying the first components of the control system. The whole accelerator should be commissioned in spring 2012 and the first exotic beams are planned one year later. Several institutes are collaborating for the control system design and Epics has been chosen as the basic framework. The architecture will rely on Linux PCs and servers, VME VxWorks IOCs and Siemens PLCs; equipment will be addressed either directly or using a Modbus/TCP field bus network. To ease the collaboration, a specific care has been taken concerning the software organisation and management both for the Epics developments and the Java high level applications. Under investigation are the evaluation of the Xal environment, the development of a triggered acquisition system and the design of an environment to generate the Epics databases from a relational database. Also, the first results obtained are presented

    Design and commissioning of the first two CYRCé extension beamlines

    No full text
    International audienceCYRCé is a TR24 cyclotron installed at the Institut Pluridisciplinaire Hubert Curien (IPHC) of Strasbourg operating at energies of 16–25 MeV and at intensities up to 400 μA. The accelerator is used to produce and provide radio-elements for PET and for SPECT. In 2015, IPHC started to develop a platform with the aim of performing radiobiological experiments. The PRECy platform foresees to contain three-to-five experimental stations linked to beamlines expanded from the second exit port of the cyclotron. This extension allows devoting one of the beamlines for detector studies within the framework of the CMS project. The design, the development and the commissioning of the first two beamlines are discussed in this paper
    corecore