614 research outputs found

    Mixture of Fluids involving Entropy Gradients and Acceleration Waves in Interfacial Layers

    Full text link
    Through an Hamiltonian action we write down the system of equations of motions for a mixture of thermocapillary fluids under the assumption that the internal energy is a function not only of the gradient of the densities but also of the gradient of the entropies of each component. A Lagrangian associated with the kinetic energy and the internal energy allows to obtain the equations of momentum for each component and for the barycentric motion of the mixture. We obtain also the balance of energy and we prove that the equations are compatible with the second law of thermodynamics. Though the system is of parabolic type, we prove that there exist two tangential acceleration waves that characterize the interfacial motion. The dependence of the internal energy of the entropy gradients is mandatory for the existence of this kind of waves. The differential system is non-linear but the waves propagate without distortion due to the fact that they are linearly degenerate (exceptional waves).Comment: 30 page

    Oxidation and fragmentation of plastics in a changing environment; from UV-radiation to biological degradation

    Get PDF
    Understanding the fate of plastics in the environment is of critical importance for the quantitative assessment of the biological impacts of plastic waste. Specially, there is a need to analyze in more detail the reputed longevity of plastics in the context of plastic degradation through oxidation and fragmentation reactions. Photo-oxidation of plastic debris by solar UV radiation (UVR) makes material prone to subsequent fragmentation. The fragments generated following oxidation and subsequent exposure to mechanical stresses include secondary micro- or nanoparticles, an emerging class of pollutants. The paper discusses the UV-driven photo-oxidation process, identifying relevant knowledge gaps and uncertainties. Serious gaps in knowledge exist concerning the wavelength sensitivity and the dose-response of the photo-fragmentation process. Given the heterogeneity of natural UV irradiance varying from no exposure in sediments to full UV exposure of floating, beach litter or air-borne plastics, it is argued that the rates of UV-driven degradation/fragmentation will also vary dramatically between different locations and environmental niches. Biological phenomena such as biofouling will further modulate the exposure of plastics to UV radiation, while potentially also contributing to degradation and/or fragmentation of plastics independent of solar UVR. Reductions in solar UVR in many regions, consequent to the implementation of the Montreal Protocol and its Amendments for protecting stratospheric ozone, will have consequences for global UV-driven plastic degradation in a heterogeneous manner across different geographic and environmental zones. The interacting effects of global warming, stratospheric ozone and UV radiation are projected to increase UV irradiance at the surface in localized areas, mainly because of decreased cloud cover. Given the complexity and uncertainty of future environmental conditions, this currently precludes reliable quantitative predictions of plastic persistence on a global scale

    Identification of an average temperature and a dynamical pressure in a multitemperature mixture of fluids

    Full text link
    We present a classical approach of a mixture of compressible fluids when each constituent has its own temperature. The introduction of an average temperature together with the entropy principle dictates the classical Fick law for diffusion and also novel constitutive equations associated with the difference of temperatures between the components. The constitutive equations fit with results recently obtained through Maxwellian iteration procedure in extended thermodynamics theory of multitemperature mixtures. The differences of temperatures between the constituents imply the existence of a new dynamical pressure even if the fluids have a zero bulk viscosity. The nonequilibrium dynamical pressure can be measured and may be convenient in several physical situations as for example in cosmological circumstances where - as many authors assert - a dynamical pressure played a major role in the evolution of the early universe.Comment: 16 page

    Structural Analysis of the Western Afar Margin, East Africa: Evidence for Multiphase Rotational Rifting

    Get PDF
    The Afar region in East Africa represents a key location to study continental breakup. We present an integrated structural analysis of the Western Afar Margin (WAM) aiming to better understand rifted margin development and the role of plate rotation during rifting. New structural information from remote sensing, fieldwork, and earthquake data sets reveals that the N-S striking WAM is still actively deforming and is characterized by NNW-SSE normal faulting as well as a series of marginal grabens. Seismicity distribution analysis and the first-ever borehole-calibrated sections of this developing passive margin show recent slip concentrated along antithetic faults. Tectonic stress parameters derived from earthquake focal mechanisms reveal different extension directions along the WAM (82°N), in Afar (66°N) and in the Main Ethiopian Rift (108°N). Fault slip analysis along the WAM yields the same extension direction. Combined with GPS data, this shows that current tectonics in Afar is dominated by the local rotation of the Danakil Block, considered to have occurred since 11 Ma. Earlier stages of Afar development (since 31–25 Ma) were most likely related to the large-scale rotation of the Arabian plate. Various authors have proposed scenarios for the evolution of the WAM. Any complete model should consider, among other factors, the multiphase tectonic history and antithetic fault activity of the margin. The findings of this study are not only relevant for a better understanding of the WAM but also provide insights into the role of multiphase rotational extension during rifting and passive margin formation in general.</p

    Microplastics disrupt hermit crab shell selection

    Get PDF
    Microplastics (plastics < 5 mm) are a potential threat to marine biodiversity. However, the effects of microplastic pollution on animal behaviour and cognition are poorly understood. We used shell selection in common European hermit crabs (Pagurus bernhardus) as a model to test whether microplastic exposure impacts the essential survival behaviours of contacting, investigating and entering an optimal shell. We kept 64 female hermit crabs in tanks containing either polyethylene spheres (n = 35) or no plastic (n = 29) for 5 days. We then transferred subjects into suboptimal shells and placed them in an observation tank with an optimal alternative shell. Plastic-exposed hermit crabs showed impaired shell selection: they were less likely than controls to contact optimal shells or enter them. They also took longer to contact and enter the optimal shell. Plastic exposure did not affect time spent investigating the optimal shell. These results indicate that microplastics impair cognition (information-gathering and processing), disrupting an essential survival behaviour in hermit crabs

    Dyadic Coping, Respiratory Sinus Arrhythmia, and Depressive Symptoms Among Parents of Preschool Children

    Get PDF
    Respiratory sinus arrhythmia (RSA) is a biomarker of cardiac vagal tone that has been linked to social functioning. Recent studies suggest that RSA moderates the impact of interpersonal processes on psychosocial adjustment. The goal of this study was to assess whether RSA would moderate the association between dyadic coping (DC) and depressive symptoms. Eighty cohabiting couples raising preschool children completed the Dyadic Coping Inventory, the Center for Epidemiological Study-Depression scale and had their RSA assessed during a laboratory session. Couples completed follow-up assessments of depressive symptoms 6 and 12 months later. Data were analyzed using an Actor-Partner Interdependence Model. Results indicated that RSA moderated the actor effect of negative DC on depression in men, such that men with lower RSA had a stronger association between their own ratings of negative DC within the couple relationship and their own depressive symptoms, compared to their counterparts with higher RSA. RSA also moderated the partner effect of delegated DC on depressive symptoms. Among men with higher RSA, there was a significant negative association between their partner’s ratings of delegated DC within the couple relationship and the men’s depressive symptoms, whereas partner-rated delegated DC was unrelated to depressive symptoms among men with lower RSA. These results suggest that men with higher RSA may possess social skills and abilities that attenuate the association between stressful marital interactions and negative mood

    Management of the thrombotic risk associated with COVID-19:guidance for the hemostasis laboratory

    Get PDF
    Coronavirus disease 2019 (COVID-19) is associated with extreme inflammatory response, disordered hemostasis and high thrombotic risk. A high incidence of thromboembolic events has been reported despite thromboprophylaxis, raising the question of a more effective anticoagulation. First-line hemostasis tests such as activated partial thromboplastin time, prothrombin time, fibrinogen and D-dimers are proposed for assessing thrombotic risk and monitoring hemostasis, but are vulnerable to many drawbacks affecting their reliability and clinical relevance. Specialized hemostasis-related tests (soluble fibrin complexes, tests assessing fibrinolytic capacity, viscoelastic tests, thrombin generation) may have an interest to assess the thrombotic risk associated with COVID-19. Another challenge for the hemostasis laboratory is the monitoring of heparin treatment, especially unfractionated heparin in the setting of an extreme inflammatory response. This review aimed at evaluating the role of hemostasis tests in the management of COVID-19 and discussing their main limitations

    De novo Assembly and Analysis of the Chilean Pencil Catfish Trichomycterus areolatus Transcriptome

    Get PDF
    Trichomycterus areolatus is an endemic species of pencil catfish that inhabits the riffles and rapids of many freshwater ecosystems of Chile. Despite its unique adaptation to Chile’s high gradient watersheds and therefore potential application in the investigation of ecosystem integrity and environmental contamination, relatively little is known regarding the molecular biology of this environmental sentinel. Here, we detail the assembly of the Trichomycterus areolatus transcriptome, a molecular resource for the study of this organism and its molecular response to the environment. RNA-Seq reads were obtained by next-generation sequencing with an Illumina® platform and processed using PRINSEQ. The transcriptome assembly was performed using TRINITY assembler. Transcriptome validation was performed by functional characterization with KOG, KEGG, and GO analyses. Additionally, differential expression analysis highlights sex-specific expression patterns, and a list of endocrine and oxidative stress related transcripts are included
    corecore