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Management of the thrombotic risk
associated with COVID-19: guidance for the
hemostasis laboratory
M. Hardy1,2, T. Lecompte3, J. Douxfils4,5, S. Lessire2, J. M. Dogné4, B. Chatelain1, S. Testa6, I. Gouin-Thibault7,
Y. Gruel8, R. L. Medcalf9, H. ten Cate10, G. Lippi11 and F. Mullier1*

Abstract

Coronavirus disease 2019 (COVID-19) is associated with extreme inflammatory response, disordered hemostasis and
high thrombotic risk. A high incidence of thromboembolic events has been reported despite thromboprophylaxis,
raising the question of a more effective anticoagulation. First-line hemostasis tests such as activated partial
thromboplastin time, prothrombin time, fibrinogen and D-dimers are proposed for assessing thrombotic risk and
monitoring hemostasis, but are vulnerable to many drawbacks affecting their reliability and clinical relevance.
Specialized hemostasis-related tests (soluble fibrin complexes, tests assessing fibrinolytic capacity, viscoelastic tests,
thrombin generation) may have an interest to assess the thrombotic risk associated with COVID-19. Another
challenge for the hemostasis laboratory is the monitoring of heparin treatment, especially unfractionated heparin in
the setting of an extreme inflammatory response. This review aimed at evaluating the role of hemostasis tests in
the management of COVID-19 and discussing their main limitations.

Keywords: Thrombosis, D-dimers, Anticoagulation, COVID-19, Coagulopathy, Hemostasis, Fibrinolysis, Heparin,
Thrombin generation, Viscoelastic tests

Introduction
Since the beginning of the coronavirus infectious disease
2019 (COVID-19) pandemic in December 2019, increas-
ing data have supported a major thrombotic risk, which
could explain a substantial part of morbidity and mortal-
ity associated with this infection. The first observations
in China reported a marked increase in plasma D-
dimers, associated with unfavorable prognosis and
enhanced thrombotic risk [1, 2]. A recent meta-analysis
demonstrated an association between several inflamma-
tory biomarkers (such as C-reactive protein (CRP),
procalcitonin, interleukin (IL-6) and ferritin) with
COVID-19 severity [3]. There is a cross-talk between

inflammation and coagulation as inflammation leads to
coagulation activation, and coagulation also affects in-
flammatory activity [4, 5]. Although heparin at prophy-
lactic doses appears to be effective in reducing mortality
in severe COVID-19 patients [6], several studies re-
ported a considerably high incidence of venous and even
arterial thromboembolic events (deep vein thrombosis,
pulmonary embolism or in situ thrombosis in the
pulmonary arteries; arterial thromboses in the systemic
circulation) despite thromboprophylaxis, thus raising the
issue of increasing anticoagulant doses [7–14]. This ap-
proach has been suggested by several groups of experts
for patients at higher thrombotic risk [15–19]. However,
this suggestion has not been endorsed by other expert
groups or societies [20–23]. Prospective trials are cur-
rently in progress to try to answer this question.
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The features and specificities of hemostasis disorders
associated with COVID-19 are partially known only. In
general, severe pulmonary inflammation (acute respira-
tory distress syndrome (ARDS)) is associated with a
significant thrombotic risk, the main mechanisms of
which include (i) local expression of tissue factor (TF)
on mononuclear cells, its accumulation and release
following endothelial damage, which subsequently initi-
ates coagulation initiation and thrombin generation, (ii)
as well as inhibition of fibrinolysis in response to the
cytokine storm (TNFα, IL-1, IL-6) [24–26]. IL-1 and
TNF-α are also the main cytokines responsible for the
impairment of endogenous anticoagulant pathways [27].
Increase in von Willebrand factor (vWF), FVIII and fi-
brinogen plasma levels was also observed [28]. Regarding
fibrinolysis, an initial and transient increase of tissue
plasminogen activator (tPA) has been described in severe
acute inflammatory states, rapidly followed by a
sustained release of PAI-1 by the endothelium [28], the
extend of the latter being associated with a worse
outcome [29]. Accordingly, t-PA and PAI-1 levels were
increased at ICU admission in ARDS patients in a recent
study, whether COVID-19 or not [30]. Levels of throm-
bin activatable fibrinolysis inhibitor (TAFI) and protein
C inhibitor were also found to be significantly elevated
in the bronchoalveolar fluid of patients with interstitial
lung disease when compared to healthy controls, which
could also add to the hypofibrinolysis observed [31, 32].
However, this hypothesis seems at odds with the marked
increase in plasma D-dimers observed in COVID-19 pa-
tients. This needs to be further investigated in patients
with COVID-19.
Other biomarkers of in vivo activation of blood coagu-

lation such as soluble fibrin complexes may also be in-
formative in assessing the thrombotic risk, but their
usefulness remains to be established. In this article, we
will be using the term ‘D-dimers’ to designate the (sol-
uble) fibrin degradation products containing the motif
‘D-dimers’ and that of soluble fibrin complexes (SFC) to
designate complexes containing one or more fibrin
monomers associated with two fibrinogen molecules or
with fibrinogen (or even fibrin) degradation products
(Table 1).
Endothelial activation by inflammatory cytokines (with

secretion of von Willebrand factor, factor VIII and PAI-
1) and dysfunction could also contribute to the
prothrombotic state observed in COVID-19 patients
[33]. Previous studies identified possible direct infection
of endothelial cells by SARS-CoV-2 with endothelialitis
[34] and increased circulatory endothelial cells, an
indicator of endothelial damage [35]. As in many severe
inflammatory states, thrombotic microangiopathy
(TMA) may develop secondary to acquired deficiency of
ADAMTS13 and subsequent increase in large von

Willebrand factor multimers [27, 36]. In COVID-19,
signs of localized pulmonary TMA were observed with
typical microvascular platelet-rich thrombi identified in
small vessels of the lungs and other organs. Von
Willebrand factor antigen and activity were reported to
be elevated and ADAMTS13 levels to be decreased,
although remaining higher than 10% [27, 36, 37]. How-
ever, schistocytes were not identified on blood smears,
signs of hemolysis were absent and platelet count was
higher than expected in this condition [27].
With limited solid data available, many questions re-

main unanswered regarding underlying mechanisms but
also stratification and management of thrombotic risk,
including the level of anticoagulation and the duration
of treatment. Some first-line hemostasis tests (i.e., acti-
vated partial thromboplastin time (APTT), prothrombin
time (PT), fibrinogen, D-dimers, platelet count) are easy
to perform, widespread and relatively inexpensive, but
have also significant drawbacks, which should be clearly
considered in guiding clinical management. The reliabil-
ity of D-dimers, especially at very high values, as well as
the respective role of anti-Xa activity and APTT for
monitoring therapy with unfractionated heparin (UFH),
will be discussed in the following parts of this article.
The indications and limitations of tests available in the
hemostasis laboratory are summarized in Table 2.

Hemostasis assessment in the laboratory
COVID-19 is frequently associated with hemostasis dis-
turbances (often referred to as “coagulopathy”, even if
many if not all aspects of hemostasis can be affected),
which significantly enhance the risk of thrombosis, and
in particular venous thrombosis. Several studies have
found an association between increased plasma D-
dimers values and unfavorable prognosis in COVID-19
[1]. Different thresholds have been proposed for stratify-
ing the risk of mortality (i.e. between 1000 or 3000 ng/
mL [38, 39]), most often according to retrospective,
methodologically weak studies, with limited statistical
power. D-dimers at hospital admission could also be
predictive of thromboembolic events [2, 11, 14, 40, 41].
However, in the presence of significant pulmonary in-
flammation, such as in severe COVID-19, fibrin deposits
can occur within alveoli and pulmonary extravascular
space, which has been confirmed in COVID-19 patients
in autopsies series [42]. The lysis of those deposits could
also contribute to the rise of D-dimers, which are thus
not specific of intravascular fibrin formation [43, 44].
Nevertheless, the measurement of plasma D-dimers

has been put forward by some expert groups as a labora-
tory criterion, along with clinical data, for stratifying
COVID-19 patients according to their thrombotic risk,
and to consider adjusted anticoagulation intensity. For
example, the working group on perioperative hemostasis
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(GIHP stands for “Groupe d’Intérêt en Hémostase Pério-
pératoire” in French) with the French group of studies
on hemostasis and thrombosis (GFHT, stands for
“Groupe Français d’Étude sur l’Hémostase et la Throm-
bose”) considered patients with plasma D-dimers levels
> 3000 ng/mL as having a very high thromboembolic
risk, and hence might benefit from increased doses of
heparin [15]. In patients at high risk of thromboembol-
ism, other authors also recommended continuing throm-
boprophylaxis after hospital discharge for a maximum of
45 days after individual assessment of the benefit/risk
balance [45]. However, the variability between methods
for measuring D-dimers raises questions about the use
of a fixed threshold [46, 47]; an increased plasma D-
dimers concentration with ongoing thromboprophylaxis
should give consideration of the administration of higher
doses of anticoagulants, and to the active search for
thrombotic event.
The most seriously affected individuals (non-survivors

and those admitted to intensive care), also have slightly
longer PT than patients with more favorable prognosis
[48, 49]. APTT is generally proportionally less prolonged
than PT, probably due to an increase in plasma concen-
tration of factor VIII, which is an acute phase reactant
[48, 49]. A low platelet count at admission (i.e., < 200 ×
109/L), along with a further decline during hospital stay,
has also been associated with increased risk of death
[50–52].
In the majority of patients, hemostasis disorders asso-

ciated with COVID-19 do not evolve towards dissemi-
nated intravascular coagulation (DIC), the diagnostic
criteria of which include, according to the International
Society on Thrombosis and Haemostasis (ISTH), a re-
duction in platelet count and fibrinogen levels associated
with an increase in PT and markers of fibrin formation,
or ‘fibrin-related markers’ (D-dimers or SFC, the former
being the most used in Europe) [49, 53]. Among labora-
tory criteria, hypofibrinogenemia (< 1 g/L) is a late criter-
ion and hence a poorly sensitive one, which can only be

found in less than 50% of cases [54]. This observation
can be explained by enhanced liver production of fi-
brinogen in response to systemic inflammatory response,
which is hence effective to maintain normal plasma con-
centrations even in concomitance with consumption co-
agulopathy. A shortening of PT has also been reported
in up to 30% of patients with COVID-19, which has
been explained with increased fibrinogen concentration
in plasma [55]. In this setting, the early identification of
consumption coagulopathy can therefore be jeopardized,
so that longitudinal monitoring of these parameters, at
least in more severe patients admitted to the ICU, would
be necessary to identify early changes that would indi-
cate the onset of DIC.
Monitoring every 48 h the plasma concentration of

PT, fibrinogen, D-dimers and platelet count has been
proposed for continuously assessing the thrombotic risk
and identifying timely alerts on possible venous throm-
botic events, as reflected by markedly increasing concen-
trations of D-dimers within 24–48 h [15, 27]. An
increase in the plasma D-dimers in patients with anti-
coagulant therapy may also warrant an increase in antic-
oagulation intensity, after weighting thrombotic and
hemorrhagic risks, although there is no clinical evidence
yet to support such D-dimers based dose adjustments.
However, the relevance of the utilization of D-dimers

levels to tailor thromboprophylaxis in COVID-19 pa-
tients has been questioned, as plasma D-dimers levels
could depend more on the lysis of extra-vascular rather
than intra-vascular fibrin deposits [43, 44]. This would
be consistent with the observation that SFC levels, which
are thought to only depend on intra-vascular fibrin de-
position, remain low in most COVID-19 patients despite
high D-dimer levels [30]. Additional biomarkers of
in vivo enhanced thrombin generation, such as SFC,
may thus provide some additional useful information for
managed care of COVID-19 [56]. SFC could also be an
earlier marker of DIC than D-dimers, of which the con-
centration increases only after clot lysis has begun [56].

Table 1 Definition of D-dimers, fibrin monomers, fibrinogen degradation products and fibrin degradation products

Entity Definition Antigenic definition (what is recognized by the
antibodies of the immunoassay – immunogen that
was used to obtain the antibodies in the animal)

Degradation products
containing the ‘D-dimers’ motif
(fibrin degradation products)

Soluble molecular assemblies produced by the
action of plasmin on polymerized fibrin stabilized by
factor XIIIa, hence comprising the ‘D-dimers’ motif

Two ‘D’ nodules of two adjacent fibrin monomers
in the fibrin network, covalently linked by factor XIIIa

Soluble fibrin complexes Complexes formed of at least one fibrin monomer
associated with fibrinogen molecules, but also
fibrinogen or even fibrin degradation products – those
complexes are soluble in plasma

desAA-fibrin (fibrinogen from which fibrinopeptides
A have been removed)

Fibrinogen degradation
products

Molecules produced by the action of plasmin on
fibrinogen (when there systemic fibrinolysis occurs)

Nodule ‘D’ or ‘E’ of fibrinogen: present on fibrinogen
and their degradation products; fibrinogen must
therefore be eliminated beforehand so as not to
be measured
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Table 2 Indications and limitations of tests available in the hemostasis laboratory

Main Limitations Indications in COVID-19

Evaluation
of the
thrombotic
risk

Screening of
thromboembolic
events

Prognosis:
disease
severity

Diagnosis
of DIC

Detection
of HIT

Monitoring of
unfractionated
heparin

Platelet count Many causes of thrombocytopenia
in the critically ill patient

X X X

APTT Major influence of preanalytical step X (*) X

Differences of APTT reagents in their
sensitivity to unfractionated heparin,
lupus anticoagulant and inflammatory
syndrome

Prothrombin
Time

Influence of the preanalytical step X

Influence of fibrinogen level

Fibrinogen
(Clauss)

Lack of sensitivity for the diagnosis of
DIC (mostly in infectious/inflammatory
setting)

X X X

Possibility of interference of direct
thrombin inhibitors with some reagents

D-dimers Decreased analytical performances in
high D-dimers values

X X X X

Production dependent on the
fibrinolytic activity

Cut-offs non commutable between
reagents

Soluble fibrin
complexes (AKA ‘Fibrin
monomers’)

Preliminary validation only X X

Not evaluated in COVID-19

Cut-offs non commutable between the
reagents

Fibrinolysis capacity
tests

Fibrinolysis is assessed in non-
physiological conditions

X X

Large array of methods

Not evaluated in COVID-19

Anti-Xa activity Inter-reagent variability X

Influence of presence/absence of
exogenous AT in the reagent

Expensive

Only available 24 h a day 7 days a week
in a fraction centers

Viscoelastic tests Not evaluated in COVID-19 X X X

Lack of standardization between
instruments and centers

Expensive

Thrombin generation
assays

Not evaluated in COVID-19 X

High sensitivity to heparins

Limited availability in clinical practice

Expensive

(*) Heparin resistance can be due to HIT.
Note: the assessment of the in vivo effect of (any) anticoagulant treatment could be assisted with the monitoring of fibrin-related markers (D-dimers;
fibrin monomers)
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Measurement of plasma SFCs has therefore been
proposed as an option besides that of D-dimers in the
diagnostic scores for DIC proposed by the ISTH and the
Japanese society of Thrombosis Hemostasis (JSTH) [57,
58]. However, the diagnostic thresholds vary consider-
ably from one kit to another (two kits are available to
the best of our knowledge: STA-Liatest FM® kit (Stago,
Asnières-sur-Seine, France) and Nanopia SF (Sekisui
Medical, Japan)), and there is a lack of extensive clinical
validation [59, 60]. For instance, The STA-Liatest FM®
kit (Stago, Asnières-sur-Seine) uses a monoclonal anti-
body (F405) specific for fibrin monomers. This antibody
is produced using desAA-fibrin as immunogen in the
presence of an anti-polymerization peptide (Gly-Pro-
Arg-Pro, GPRP) [61]. Regarding desAA-fibrin, it is the
result of an enzymatic cleavage of purified fibrinogen by
the action of batroxobin (reptilase), with the release of
fibrinopeptides A only; under those conditions, factor
XIIIa cannot have any role, thus there is no ‘D-dimer’
motif. The evaluation of laboratory performance by an
external quality control (EQA performed by ProBioQual)
showed an inter-laboratory imprecision (coefficient of
variation; CV) of ~ 30% for the three levels of controls
tested. The half-life of SFC is slightly shorter than that
of D-dimers (i.e., < 6 h), depending on the clinical
context though (size and range of molecules produced,
fibrinolytic activity and so forth) [62]. The half-life is
hence longer than that of fibrinopeptides A and B (3–5
min), thrombin-antithrombin complexes (TAT; 10–15
min) and prothrombin fragments 1 + 2 (90 min) [63], so
that is less dependent on the time of blood collection,
considering that activation of coagulation cannot be a
continuous, steady process. Nevertheless, the influence
of the time elapsed between thrombosis onset, blood
collection, and measurement, as well as the potential in-
fluence of anticoagulants remain to be studied [56]. For
all assays, in particular for fibrinopeptides and TAT, the
influence of preanalytical artifacts (thrombin formed
during blood collection and processing) should be con-
sidered [56]. At this stage, additional evidence is needed
to define the incremental clinical value of SFC over D-
dimers in COVID-19 hemostasis monitoring.

Limitations of measurement of the plasma concentration
of D-dimers
Even if the usefulness of D-dimer testing in the manage-
ment of COVID-19 patients remains uncertain, some
expert groups suggested the use of this parameter
together with clinical variables to stratify patients
according to their thrombotic risk and determine throm-
boprophylaxis intensity accordingly [15–19]. This im-
plies that test results shall be timely and reliable, and
accurate threshold values need to be defined according

to the specific clinical context and the immunoassay
used.
Soluble fibrin degradation products containing the D-

dimer motif constitute a heterogeneous set of molecules
produced during degradation of polymerized fibrin net-
work, which has been previously covalently cross-linked
by activated factor XIII. This explains differences
observed between fibrinogen and fibrin degradation
products (FDP), the former being generated by degrad-
ation of fibrinogen from the fibrinolytic system (Fig. 1)
[58]. A large inter-laboratory variability has been re-
ported for the measurement of the plasma D-dimers
concentration, which mostly reflects the different assay
methodologies, the different mix of antibodies with vari-
able antigenic specificity, the individual calibration and
the variation of measuring units [64–66]. The lack of
internationally certified calibrators and quality controls
also challenges to achieve better degree of universal
harmonization. The large inter-individual variability
(depending among others on renal function), is a further
source of uncertainty in test results interpretation. A
diagnostic threshold that has been validated within a
specific clinical setting, using a certain assay, cannot be
translated to different analytical conditions and different
clinical settings [67]. The diagnostic thresholds shall
hence be validated according to the method used and
for the intended diagnostic purpose. Most of the avail-
able D-dimers assays have also been developed to have
the best reproducibility around the threshold value used
for excluding deep vein thrombosis and/or pulmonary
embolism, which is usually around 500 ng/mL. There-
fore, their performance at higher values, such as those
proposed for initiating high dose anticoagulation in
COVID-19 patients (i.e., over 3000 ng/mL), is probably
suboptimal and would need to be assessed in order to
avoid the use of inaccurate results in these patients. For
example, external quality controls performed with
moderately elevated D-dimers samples (target value
4000 ng/mL FEU) identified method-specific D-dimers
means ranging from 470 to 10,150 ng/mL FEU (all
methods coefficient of variation: 23%) [68]. As a possible
solution, the threshold values of plasma D-dimers could
be adjusted based on assay methodology. For example,
for DIC diagnosis according to the ISTH definition, the
appropriate D-dimer cut-off value for 2 points ranged
from 3500 ng/mL to 6500 ng/mL, depending on the
reagents used [69].
The potential impact of many preanalytical variables

on measurement of plasma D-dimers should also be
considered, as this test is vulnerable to the excessive
presence of free hemoglobin in plasma, and becomes vir-
tually uninterpretable when the plasma free hemoglobin
concentration is over 30 g/L [70]. Hyperlipemia, hyperbi-
lirubinemia or a high concentration of immunoglobulins
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can also generate a bias in the measurement, though the
influence of these conditions has been less studied [70].
However, it has to be considered in the context of
COVID-19 due to the high concentration of immuno-
globulins measured in some of these patients 2 weeks
after the symptom onset [71].

Laboratory investigation of fibrinolysis
Many of the methods available for the study of fibrinoly-
sis have significant drawbacks. Fibrinolysis assays are
technically challenging, time consuming and cannot be
easily automated, thus explaining their underuse in
clinical laboratories. Under physiological circumstances,

Fig. 1 Mechanisms of production of: D-dimers, fibrin monomer, fibrinogen degradation products and fibrin degradation products. Fibrinogen is
composed of two lateral regions “D” and one central region “E” connected by coiled coils: the formula is D-E-D. Fibrinopeptides A and B located at the
N-termini of A-alpha and B-beta chains (× 2) on the E region are cleaved from fibrinogen by thrombin, resulting in the production of a fibrin monomer
(FM). FMs are highly reactive and if locally formed and concentrated, quickly interact with one another by to form a two-stranded fibrin polymer. These
polymers then aggregate laterally to make fibers (not shown). Activated factor XIII covalently crosslinks adjacent D regions (belonging to two fibrin
monomers), which tightens the fibrin strand, increases clot stiffness, and makes it more resistant to degradation by plasmin. Other crosslinks also occur,
not shown here for simplicity’s sake. The physical state is a gel - such polymerized structures are no longer soluble. During fibrinolysis, plasmin can
cleave fibrin polymers between adjacent D and E regions, but cannot separate covalently linked D regions. This produces fibrin degradation products
of different size, containing the ‘D-dimer’ motif, and when small enough are soluble. FM can escape in the fluid plasma phase, the more so if formed
in a disseminated manner (systemic thrombin generation), and then quickly binds to fibrinogen molecules, or fibrinogen degradation products, bring-
ing the polymerization process to an end; they hence remain soluble because they are small enough. These compounds are known as ‘soluble fibrin
complexes’ (SFC). In the presence of hyperfibrinolysis (systemic, disseminated), PAI-1 (plasminogen activator inhibitor) and alpha2-antiplasmin can be
overwhelmed, and uninhibited plasmin can diffuse in the plasma fluid phase; under those conditions, plasmin can also cleave fibrinogen molecules,
resulting in fibrinogen degradation products production. ‘FDP’ may refer to both fibrinogen and fibrin degradation products
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fibrinolysis takes many hours or days to develop in
healthy blood after clotting, and this is indeed a major
limitation for rapidly assessing the ‘global fibrinolysis
capacity’ (GFC). The accelerated (albeit remaining long)
assessment of fibrinolysis needs prior removal of inhibi-
tors or the addition of tPA to initiate plasmin gener-
ation, complicating our appraisal of what is going on
in vivo. Plasma-based systems, for example, where
clotting and lysis may be easily monitored with turbidi-
metric assessment, need tPA to accelerate the reaction
[72]. Alternatively, euglobulin may be prepared from
plasma, thus lowering the concentration of fibrinolytic
inhibitors (including PAI-1 and antiplasmin) [73, 74].
Individual components of the fibrinolytic system can

also be measured. Although interesting evidence is
emerging especially for PAI-1 in COVID-19 [30], its
measurement is limited by large inter-laboratory
variability, which is attributable to the different assay
methodology, antigenic specificity of the antibodies, the
lack of internationally certified calibrators and quality
controls, as well as to the many measuring units that
can be used for reporting data.
Interestingly, PAI-1 follows a circadian rhythm in

humans, with a morning peak (around 8 AM) independ-
ent from the sleep pattern [75, 76]. The time-interval
between blood collection and analysis, the anticoagulant
used in sample tubes and storage temperature are other
variables that are known to have an impact on plasma
PAI-1 measurement [77–79].
A weak stability at room temperature of the plasma

used for assessing fibrinolysis (and especially PAI-1) has
been occasionally described, whilst hemolysis (with
release of cell free hemoglobin and other intracellular
components) may contribute to produce an inhibitory
effect on some fibrinolysis assays [80]. The contact phase
(i.e., activated factor XII) also stimulates fibrinolysis
through conversion of single chain urokinase-type
plasminogen activator (scu-PA) in uPA [81]. Therefore,
standardization of preanalytical and analytical steps is of
utmost importance for obtaining accurate and reliable
results of most fibrinolysis assays.
Regarding viscoelastic tests, ROTEM and TEG

currently lack sensitivity to disordered fibrinolysis but
there is still room for improvement [82].
As some extracellular vesicles are able to facilitate

plasmin generation, it would be interesting to assess the
contribution of such vesicle-dependent fibrinolytic
activity in COVID-19 [83, 84].

Viscoelastic tests
Viscoelastic tests (VETs) are “global” hemostasis tests
evaluating mechanical properties of the clot as it forms
and lyses. The most frequent used VETs comprise
thromboelastography (TEG) and rotational

thromboelastometry (ROTEM). These commercial as-
says are embedded in the care for critically ill patients in
many institutions, in particular for guiding transfusion
management in patients at high risk of bleeding. In gen-
eral, these assays are sensitive to detect hypocoagulabil-
ity related to consumption of coagulation factors like
fibrinogen, but hypercoagulability can also be detected.
Indeed, increased clot firmness has been associated with
occurrence of venous thromboembolism (VTE) in vari-
ous clinical settings [85–91], and has hence been pro-
posed for evaluating the thrombotic risk associated with
SARS-CoV-2 infection.
In COVID-19 patients, whole blood rotational throm-

boelastometry (ROTEM) has been able to detect acceler-
ated clot formation and increased clot strength,
persisting for at least 5 days [92]. Similar findings were
reported by other groups using ROTEM and Quantra
instruments, with both elevated platelets and fibrinogen
contribution to clot strength [93, 94]. Increased heparin
prophylaxis dose was associated with attenuation of fi-
brinogen contribution to clot strength and fibrinogen
level, although lacking control conditions, this may have
been a chance finding. Data regarding fibrinolysis evalu-
ation in COVID-19 using VETs is sparser; hypofibrinoly-
sis has been identified in one study [95], although
another could not confirm this result [92]. Only one
study evaluated the association between clinical out-
comes and VETs parameters in COVID-19. The authors
identified that the lack of clot lysis at 30 min on citrated
kaolin TEG with heparinase was associated with VTE,
whereas increased clot strength was not [95]. The com-
bination of absence of lysis at 30 min with D-dimers
levels > 2600 ng/mL was also strongly associated with
VTE and with the need for dialysis [95]. Nonetheless,
the place of VETs in the management of COVID-19
deserves further evaluation.
When using VETs, some drawbacks have to be consid-

ered. First, these tests are generally poorly sensitive to
platelet function and mild fibrinolysis disorders [96, 97],
and their sensitivity to fibrinogen levels is quite variable
depending on the test methodology [98]. Second, even if
considered as being global tests, they do not evaluate the
contribution of endothelium, whose dysfunction likely
contributes to COVID-19 associated hemostasis distur-
bances [34]. Moreover, similarly to D-dimers and SFC,
correlation between methods is moderate, and inter-
laboratory variation is high [99], but probably improving
with introduction of new methods (ROTEM Sigma®,
TEG6S® and Quantra®). Regarding preanalytical condi-
tions, the time-interval between blood collection and
VET [100, 101], anticoagulants and/or additives used in
sample tubes [102, 103], over or underfilling of blood
tubes [104], hemolysis [105] and hematocrit [106–108]
can influence the test results. Pneumatic tubes transport
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systems (PTS) may also exert little influence on test
results, depending on acceleration forces of the local sys-
tem [109–112]. Therefore, this effect should be evalu-
ated locally when utilization of PTS is considered for
blood sampled for VETs. Finally, the accuracy of these
tests for bleeding management or thrombotic risk stratifica-
tion has not been validated in any hyperinflammatory con-
text. Caution is therefore required when using VETs in
COVID-19 patients, and further studies are needed to pre-
cise their added value in the management of these patients.

Thrombin generation assay
Thrombin generation assays (TGA) enable an integrative
approach of coagulation. Commercial assays include
Technothrombin® TGA kit from Technoclone and
Calibrated Automated Thrombogram® (CAT) and ST-
Genesia® from Stago Diagnostica [113, 114]. While TGA
may be used to detect hypercoagulability, the frequent
use of heparin/low molecular weight heparin (LMWH)
in hospitalized COVID-19 patients could make this test
relatively unsuitable for evaluating hypercoagulability.
Modification of the TGA conditions, i.e. by adding poly-
brene or heparinase as neutralizing agent [115], could be
of interest to eliminate heparin. However, data has not
been reported yet in COVID-19 patients. Of note, pre-
analytical variables and choice of the reference plasma to
normalize the result also have important impact on
TGA measurement and must be controlled in order to
reduce the variability of measurement [116].

Anticoagulation - laboratory monitoring
Due to the high thrombotic risk associated with this in-
fection, systematic antithrombotic prophylaxis should be
administered and to date, parenteral administration of a
heparin preparation is the preferred procedure in the
hospital setting.

Choice of anticoagulant
LMWH is recommended as first-line therapy for the
prophylaxis of VTE in hospitalized COVID-19 patients
[15, 20, 117, 118]. Direct oral anticoagulants (DOACs)
or vitamin K antagonists, are not recommended because
of the risk of drug interactions, among others with some
antiviral drugs, the expected broad fluctuation in plasma
concentrations (for DOACs), especially in patients at
higher risk of rapid clinical deterioration, and because of
the late onset of anticoagulation and higher risk of
bleeding with VKA [119]. Heparin, and especially the
long heparin chains, was reported to also exhibit anti-
inflammatory activity in addition to the anticoagulant
effect, by binding and neutralizing inflammatory cyto-
kines and acute phase proteins, while potentially exert-
ing a protective effect on endothelium [120]. It also
interferes with neutrophils recruitment into tissue and

impairs neutrophil function by inhibiting the activity of
the neutrophil protease’s human leukocyte elastase and
cathepsin G, which can promote inflammation [121,
122]. It has also been hypothesized that heparin may
hinder the interaction between the virus and the host
cell through non-specific ionic bond, and thus may con-
tribute to decrease the rate of infected cells [120, 123].
However, we do not yet know precisely to what extent
heparin is clinically effective in this infection.
Compared to UFH, LMWH has better bioavailability

after subcutaneous administration and longer duration
of action, allowing daily administration in one or two in-
jections. No regular laboratory monitoring is necessary
for treatment with LMWH because of the predictable
anticoagulant activity after administration of doses ad-
justed to body weight on the one hand, and the lack of
formal association demonstrated between laboratory
tests results and clinical efficacy or complications on the
other [124]. However, a single anti-Xa activity measure-
ment can be proposed in case of administration of high
or intermediate doses in a patient with moderate renal
impairment, with a BMI < 18 kg/m2 or > 30 kg/m2, or
during pregnancy, mainly to rule out drug accumulation
[125]. In the event of increased doses in patients at
enhanced thrombotic risk, measurement of anti-Xa
activity is also recommended 4 h after the third dose to
exclude accumulation. The anti-Xa value must be based
on a calibration curve with the specific heparin type and
interpretation of test result must also be made for the
same compound; e.g. with therapeutic doses of enoxa-
parin, the mean peak concentration observed is 1.2 IU/
mL. This measurement can be repeated for example in
case of renal function impairment.
UFH is only recommended in case of severe renal

failure (creatinine clearance according to Cockcroft-
Gault equation < 30mL/min), extracorporeal membrane
oxygenation (ECMO) [15] or significant bleeding risk
(shorter half-life than LMWHs, easier neutralization by
protamine) [126]. The risk of heparin-induced
thrombocytopenia (HIT) is also much higher with UFH
[127]. Regular laboratory monitoring during anticoagula-
tion is necessary because of the high inter- and intra-
individual variability in the anticoagulant response [125].

Laboratory monitoring of unfractionated heparin
treatment
Adjustment is thought to be required because of high
inter and intra-individual variability. Historically, adjust-
ment of UFH dosage was based on APTT. The measure-
ment is performed 4 to 6 h after initiation and any dose
change, and once a day at least, to reach a target APTT
ratio between 1.5 and 2.5. This therapeutic target dates
from work in 1972 and has never been confirmed in
large clinical studies [128]. Since then, the number of

Hardy et al. Thrombosis Journal           (2020) 18:17 Page 8 of 16



reagents used for the APTT has exponentially increased,
the sensitivity of which is very different both to heparin
and biological interference (including several proteins of
the acute phase) [129–131]. Therefore, calculation of the
APTT ratio corresponding to an anti-Xa activity be-
tween 0.3 and 0.7 IU/mL would be recommended for
each analyzer and each new batch of reagents. This cal-
culation should best be performed with plasma samples
from patients treated with UFH because the use of
plasma spiked with UFH gives less relevant results due
to the influence of the metabolism of heparin in vivo
and its bioavailability [132]. For some reagents, the
relationship between heparin levels and APTT is linear,
but this can change in case of significant inflammation
[133]. Most importantly, APTT is very dependent on
pre-analytical conditions. Among others, platelet factor
4 (PF4) released by activated platelets during inadequate
sampling procedure or prolonged delay before centrifu-
gation can neutralize part of the heparin, leading to a
risk of underestimating its activity [134].
Several biological parameters can cause a prolongation

of the APTT (e.g. high CRP, presence of lupus anticoag-
ulants, coagulation factors deficiency, high plasma
concentration in FDPs which oppose the polymerization
of fibrin) or its shortening (e.g. increased plasma
concentration of acute phase proteins such as FVIII and
fibrinogen) [63, 135, 136]. The influence of these param-
eters will also depend on assay methodology, the type of
reagents, and has a high inter-individual and intra-
individual (i.e., during hospitalization) variability [137,
138]. For these reasons, the GFHT advises against the
use of APTT for monitoring treatment with UFH [133].
Moreover, the use of APTT is problematic when this
test is prolonged prior to initiation of UFH treatment
(for example, in case of lupus anticoagulants or coagula-
tion factors deficiency); anti-Xa target should also con-
sider the etiology of this prolongation when clinically
relevant (i.e. defects with a bleeding risk).
In COVID-19, the increased plasma concentrations of

fibrinogen and FVIII can cause a shortening of APTT
(observed in 16% of affected patients) [55], and this may
lead to underestimating the anticoagulant effect of hep-
arin. This situation can contribute to excess heparin dos-
ing, enhancing the bleeding risk, and underlines the
importance of collecting a basal APTT value before
anticoagulation. This can be problematic in some set-
tings, e.g. in the ICU, where patients are frequently
transferred with anticoagulation already started at inter-
mediate or therapeutic doses [13]. Conversely, APTT
prolongation may be related to the transient increased
levels of antiphospholipid antibodies, a situation encoun-
tered during viral infections [139], including COVID-19
[10, 140–143], or when CRP is high [138], thus leading
to a risk of heparin underdosage. Lupus anticoagulant

screening can also be falsely positive in the presence of
variables prolonging clotting time of tests used for its
screening (for example, elevated CRP or presence of an-
ticoagulants, among which heparin) [143–146]. The
APTT may also be prolonged in the presence of DIC
(which is relatively rare in COVID-19). In this situation,
its measurement by means of an optical system may
become uninterpretable: an immediate and gradual
decrease in light transmittance can be observed even
before clot formation due to the presence of a complex
between CRP and very low density lipoproteins in the
presence of calcium [147], thus rendering the measure-
ment unreliable [148]. Therefore, mechanical methods
are advisable in this circumstance, where measurement
anti-Xa activity may even be the best choice.
Thus, heparin monitoring with aPTT may be challenging

in COVID-19 patients due to the hyper-inflammatory sta-
tus of the patient. Indeed, the high fibrinogen and factor
VIII levels, the interference of CRP (depending on the
reagents used) and also the potential presence of antipho-
spholipid antibodies may affect the aPTT. Therefore, anti-
Xa activity seems more suitable to monitor UFH treatment
in these patients and more generally in ICU patients for the
very same reasons. However, there are several caveats here
as well. First, FXa is not the essential target of UFH. Its
inhibition is studied under very artificial conditions: in the
fluid phase (and not within the prothrombinase complex
formed on a phospholipid surface) and in a calcium-
depleted medium. The in vivo inhibitory activity of UFH is
indeed three times stronger towards FIIa than FXa [149].
This difference is further artificially increased in vitro by
use of low calcium concentrations in the assay mixture: the
anti-Xa activity was halved under these conditions, com-
pared to physiological concentrations of calcium, but the
effect of low calcium on anti-IIa activity is more limited
[149]. Having mentioned that, a good correlation exists
in vitro between anti-Xa and anti-IIa activities, thus enab-
ling the use of the former test to assess the effect of heparin
therapy. The anti-Xa assay consists of measuring in vitro
the residual activity on a chromogenic substrate specific for
FXa added to citrated plasma. Compared to APTT, this test
has the advantage of being less vulnerable to biological
interference (possible interference of free hemoglobin and
bilirubin in case of significant elevation [150]) and less
dependent on pre-analytical conditions - with the notable
exception of PF4 released in vitro by platelets. Even if the
validity of anti-Xa activity of UFH in the presence of an im-
portant inflammatory syndrome has not been formally
established (or for that matter under any circumstances),
this measure will be less impacted in this context, particu-
larly if the reagents contain antithrombin (AT). However, it
is not advisable to use kits with exogenous AT to avoid
overestimation of anticoagulant activity in case of AT
deficiency, with risk of heparin underdosing. The plasma
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concentration of AT can indeed decrease in case of sepsis
[151]. Only few data are available on the sensitivity of kits
without exogenous AT to changes in plasma AT concen-
tration [152]. Some reagents also contain dextran sulfate,
which will displace heparin from its non-specific binding
(including PF4). Particularly, the influence of PF4 released
by activated platelets is therefore minimized, which is favor-
able for limiting the impact of pre-analytical conditions on
test result, but problematic when the concentration of PF4
is actually high in vivo. Unlike a ‘global’ test like APTT, the
measurement of anti-Xa activity is insensitive to fluctua-
tions in the underlying hemostatic state (for example,
coagulation factor defect following hemorrhage or DIC),
which should prompt an adjustment in therapeutic targets
to the clinical context and the possible identification of
such defects. Finally, significant variability in heparin sensi-
tivity has been reported between the different commercial
kits [153–156].
The therapeutic range in terms of anti-Xa activity is

considered between 0.3 and 0.7 IU/mL [125]. These values
are derived from the work of 1972 that was previously
mentioned. It was hence inferred from the APTT target to
be reached for secondary prevention of VTE. The bottom
line is that it lacks validation for the same reasons [157].
The application and interpretation of these tests in a
hyperinflammatory context also raises important ques-
tions. Given the very high thrombotic risk described or
suspected in some subgroups of patients, the GIHP sug-
gested narrowing the target of anti-Xa activity in the
upper zone, to 0.5–0.7 IU/mL, for those at the highest
thromboembolic risk [15]. This increase in dosage, not
supported by objective data, remains debated [20–23],
whilst ongoing prospective, multicenter clinical trials aim
at addressing this question. In addition to the selection of
patients who could potentially benefit from increased
doses of anticoagulants, the question of treatment dur-
ation is a major one. The resolution of the inflammatory
syndrome should be accompanied by a reduction in the
thrombotic risk, thus exposing the patient to excessive
anticoagulation and risk of bleeding when higher doses of
heparin are maintained. However, no firm recommenda-
tion on duration and intensity of COVID-19 anticoagula-
tion can be made at this time.
In patients receiving UFH, a laboratory resistance to

the anticoagulant effect of heparin, arbitrarily defined by
failure to reach the therapeutic target despite the admin-
istration of doses > 1.5 times usual doses, which are
about 400 to 600 U/kg/24 h [158, 159], is frequently
observed in COVID-19 [13, 160], and adds to the clinical
resistance previously outlined (occurrence of thrombotic
events under well-conducted drug thromboprophylaxis).
The hyperinflammatory context could also explain part
of this observation. Indeed, UFH is able to non-
specifically bind several acute phase proteins as well as

activated endothelial cells and platelets, thus limiting its
anticoagulant activity [161, 162]. The administration of
an initial bolus of UFH is therefore needed to saturate
non-specific fixation [163]. The increased plasma
concentration of fibrinogen and FVIII will also contrib-
ute to generate heparin resistance when the effect is
monitored with the APTT, which is less likely to be
observed when anti-Xa activity is used. Acquired AT
deficiency by consumption or production defects (nega-
tive protein of the acute phase) could also contribute to
the heparin resistance observed in some COVID-19 pa-
tients [151], especially those most seriously affected [10,
49], but in most patients it does not justify the prescrip-
tion of AT concentrates. To the best of our knowledge
there is one single prospective interventional study on
UFH monitoring in case of laboratory heparin resistance.
In this study, the utilization of anti-Xa activity instead of
aPTT permitted to avoid UFH dosage escalation with
similar clinical outcomes [164]. Whether this holds true
for COVID-19 patients remains to be established. When
heparin resistance is suspected based on APTT values,
UFH shall be administered according to the anti-Xa ac-
tivity [165]. The advantages and limitations of APTT vs
anti-Xa for UFH monitoring are summarized in Table 3.

Diagnosis of heparin-induced thrombocytopenia (HIT)
A final aspect of heparin monitoring is screening for HIT.
A platelet count should be performed before administering
the first injection of heparin, if possible, or as soon as pos-
sible thereafter. In the COVID-19 setting, it is reasonable to
monitor the platelet count regularly between the 4th and
the 14th day following the initiation of heparin therapy
(once or twice a week in case of LMWH treatment, two to
three times a week during UFH treatment), then once a
week until the end of the first month of therapy. The devel-
opment of thrombocytopenia (< 100 × 109/L) or the rapid
decrease in platelet count (especially if ≥50% in less than
24 h) should then suggest the diagnosis of HIT [166]. How-
ever, especially in the presence of acute inflammation and
infection, other etiologies may explain a decrease in platelet
count. Therefore, a systematic evaluation of clinical prob-
ability of diagnosis allows better identification of patients in
whom the occurrence of this complication must be
suspected, and for whom laboratory work-up for HIT
antibodies is indicated. This evaluation is generally per-
formed with the 4Ts’ score, much studied [167, 168] [159],
despite its limitations, particularly in more complex situa-
tions such as those encountered in ICU (no consensus on
the drugs responsible for thrombocytopenia, many other
causes of thrombocytopenia, very high negative predictive
value but not absolute (e.g. thrombosis in the absence of
thrombocytopenia), insufficient data on platelet count,
weak agreement in the determination of the 4th criteria
(other causes of thrombocytopenia)) [166, 169, 170].
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In case of strong suspicion, or as soon as the anti-
bodies are identified, treatment with heparin should be
stopped and replaced by a direct thrombin inhibitor
(DTI; argatroban, bivalirudin) or by danaparoid sodium.
Of note, the presence of a DTI can lead to underestima-
tion of plasma fibrinogen concentrations by inhibition of
the thrombin present in Clauss’ reagent [171]. This
interference will vary depending on the thrombin con-
centration used in the reagent [172, 173]. To a lesser ex-
tent, interference may also exist in the presence of high
concentration of UFH (0.6 to 2.0 IU/mL, depending on
the reagent), which would exceed the neutralization cap-
acities of the reagent used, or in the presence of high
concentration of FDPs (> 100–130 μg/mL) [173].

Conclusion
SARS-CoV-2 (COVID-19) infection is associated with a
laboratory prothrombotic state and a high incidence of
thrombosis. The follow-up of COVID-19 patients by

hemostasis testing could be pivotal, both in terms of risk
evaluation and therapeutic monitoring, though the limi-
tations of the tests used must always be acknowledged.
Longitudinal studies are needed to clarify which parame-
ters are the most relevant in terms of thrombotic risk
assessment and how to use them for patients’ manage-
ment (clinical implications, optimal cut-offs, frequency
of measurement, etc.). Measuring anti-Xa activity is rec-
ommended to guide UFH treatment, although this assay
is not without drawbacks. Whichever the test used, the
attitude adopted must fit local analytical conditions.
Additional studies are needed to gain knowledge on the
complex, variable and changing disturbances of
hemostasis in COVID-19 patients and its interactions
with the proinflammatory and infectious status of these
patients.
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Table 3 Main advantages and limitations of APTT and anti-Xa activity for UFH treatment laboratory monitoring

Advantages Limits

APTT - largely available, low cost
- sensitive to clinically relevant changes of coagulation
(coagulation proteins increases or deficiencies)

- numerous interferences; optical methods can be unreliable in case of DIC

- heparin sensitivity is highly reagent dependent

- APTT prolongation target needs to be established for each new batch of
reagents

- APTT before UFH needed

- clinically irrelevant changes, or of dubious clinical relevance

APTT prolonged with:

• presence of antiphospholipid antibodies (viral infections)

• high CRP (depending on the reagent)

• high plasma levels in FDPs

• preanalytical (e.g., heparin/EDTA contamination, under-filling, delayed
centrifugation, hypertriglyceridemia, hyperbilirubinemia)

APTT shortened with:

• preanalytical (e.g., prolonged venous stasis, vigorous mixing, coagulation of the
sample, PF4)

• high factor VIII levels

Anti-Xa
activity

- less vulnerable to biological interferences
- no requirement for measurement before UFH
administration

- preanalytical interferences: PF4*; free hemoglobin and bilirubin if significant
elevation

- insensitive to fluctuations in the underlying coagulation state (i.e., coagulation
factor increases or defects), of potential clinical relevance

- AT deficiency (e.g. in sepsis): risk of heparin underdosing with kits containing
exogenous AT; sensitivity to endogenous AT not evaluated with kits that do
not contain exogenous AT

- variability in reagents composition (AT, dextran…)

- therapeutic range poorly defined

- not validated in hyperinflammatory states

- less available, more expensive

*PF4 released by activated platelets during poor sampling technique will neutralize UFH, leading to an underestimation of its activity
AT antithrombin, APTT activated partial thromboplastin time, UFH unfractionated heparin, PF4 platelet factor 4; CRP C-reactive protein, DIC disseminated
intravascular coagulation, FDP fibrinogen and fibrin degradation products; FVIII factor VIII.
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