4 research outputs found

    Increased Expression of P-Glycoprotein Is Associated with Doxorubicin Chemoresistance in the Metastatic 4T1 Breast Cancer Model

    No full text
    Development of drug resistance is one of the major causes of breast cancer treatment failure. The goal of this study was to understand the chemoresistance mechanism using the highly metastatic 4T1 breast cancer model, which emulates stage IV breast cancer in humans. The metastatic 4T1 breast cancer cell line treated with either doxorubicin or 5-FU showed a concentration-dependent reduced cell proliferation, with induced G2-phase growth arrest (doxorubicin) or G1-phase growth arrest (5-FU). Doxorubicin treatment partially suppressed the multiorgan metastasis of 4T1 breast cancer cells in the lung, heart, liver, and bone, compared with either 5-FU or cyclophosphamide. We isolated and characterized 4T1 breast cancer cells from doxorubicin-resistant metastatic tumors (cell line 4T1-R). Multiorgan metastasis of drug-resistant 4T1 breast tumors was totally resistant to doxorubicin treatment. Our results indicate that doxorubicin is localized exclusively in the cytoplasm of resistant 4T1 breast cancer cells and that it cannot reach the nucleus because of increased nuclear expression of P-glycoprotein. Pretreatment of doxorubicin-resistant 4T1-R breast cancer cells with verapamil, a general inhibitor of P-glycoprotein, increased nuclear translocation of doxorubicin and cellular cytotoxicity. Thus, impaired nuclear translocation of doxorubicin due to increased expression of P-glycoprotein is associated with doxorubicin resistance of highly metastatic 4T1 breast cancer

    The Collapse of East European Communism and the Repercussions within the Soviet Union (Part 3)

    No full text

    Genetic studies of body mass index yield new insights for obesity biology

    Get PDF
    Note: A full list of authors and affiliations appears at the end of the article. Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P 20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.</p
    corecore