161 research outputs found

    GLIMPSE-CO1: the most massive intermediate-age stellar cluster in the Galaxy

    Full text link
    The stellar cluster GLIMPSE-C01 is a dense stellar system located in the Galactic Plane. Though often referred to in the literature as an old globular cluster traversing the Galactic disk, previous observations do not rule out that it is an intermediate age (less than a few Gyr) disk-borne cluster. Here, we present high-resolution near-infrared spectroscopy of over 50 stars in the cluster. We find an average radial velocity is consistent with being part of the disk, and determine the cluster's dynamical mass to be (8 \pm 3)x10^4 Msun. Analysis of the cluster's M/L ratio, the location of the Red Clump, and an extremely high stellar density, all suggest an age of 400-800Myr for GLIMPSE-C01, much lower than for a typical globular cluster. This evidence therefore leads us to conclude that GLIMPSE-C01 is part of the disk population, and is the most massive Galactic intermediate-age cluster discovered to date.Comment: 10 pages, 9 figures, accepted for publication in MNRA

    Angular Momentum and the Formation of Stars and Black Holes

    Full text link
    The formation of compact objects like stars and black holes is strongly constrained by the requirement that nearly all of the initial angular momentum of the diffuse material from which they form must be removed or redistributed during the formation process. The mechanisms that may be involved and their implications are discussed for (1) low-mass stars, most of which probably form in binary or multiple systems; (2) massive stars, which typically form in clusters; and (3) supermassive black holes that form in galactic nuclei. It is suggested that in all cases, gravitational interactions with other stars or mass concentrations in a forming system play an important role in redistributing angular momentum and thereby enabling the formation of a compact object. If this is true, the formation of stars and black holes must be a more complex, dynamic, and chaotic process than in standard models. The gravitational interactions that redistribute angular momentum tend to couple the mass of a forming object to the mass of the system, and this may have important implications for mass ratios in binaries, the upper stellar IMF in clusters, and the masses of supermassive black holes in galaxies.Comment: Accepted by Reports on Progress in Physic

    ĭn΄tər-ăk\u27tĭv

    Get PDF
    Catalog for the exhibition ĭn΄tər-ăk\u27tĭv held at the Seton Hall University Walsh Gallery, November 8 - December 15, 2006. Curated by Gianluca Bianchino, Jeanne Brasile and Asha Ganpat. Includes an essay by Jeanne Brasile. Includes illustrations

    An Observational Study With the Janssen Autism Knowledge Engine (JAKE®) in Individuals With Autism Spectrum Disorder

    Get PDF
    Objective: The Janssen Autism Knowledge Engine (JAKE®) is a clinical research outcomes assessment system developed to more sensitively measure treatment outcomes and identify subpopulations in autism spectrum disorder (ASD). Here we describe JAKE and present results from its digital phenotyping (My JAKE) and biosensor (JAKE Sense) components.Methods: An observational, non-interventional, prospective study of JAKE in children and adults with ASD was conducted at nine sites in the United States. Feedback on JAKE usability was obtained from caregivers. JAKE Sense included electroencephalography, eye tracking, electrocardiography, electrodermal activity, facial affect analysis, and actigraphy. Caregivers of individuals with ASD reported behaviors using My JAKE. Results from My JAKE and JAKE Sense were compared to traditional ASD symptom measures.Results: Individuals with ASD (N = 144) and a cohort of typically developing (TD) individuals (N = 41) participated in JAKE Sense. Most caregivers reported that overall use and utility of My JAKE was “easy” (69%, 74/108) or “very easy” (74%, 80/108). My JAKE could detect differences in ASD symptoms as measured by traditional methods. The majority of biosensors included in JAKE Sense captured sizable amounts of quality data (i.e., 93–100% of eye tracker, facial affect analysis, and electrocardiogram data was of good quality), demonstrated differences between TD and ASD individuals, and correlated with ASD symptom scales. No significant safety events were reported.Conclusions: My JAKE was viewed as easy or very easy to use by caregivers participating in research outside of a clinical study. My JAKE sensitively measured a broad range of ASD symptoms. JAKE Sense biosensors were well-tolerated. JAKE functioned well when used at clinical sites previously inexperienced with some of the technologies. Lessons from the study will optimize JAKE for use in clinical trials to assess ASD interventions. Additionally, because biosensors were able to detect features differentiating TD and ASD individuals, and also were correlated with standardized symptom scales, these measures could be explored as potential biomarkers for ASD and as endpoints in future clinical studies.Clinical Trial Registration:https://clinicaltrials.gov/ct2/show/NCT02668991 identifier: NCT0266899

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe
    corecore