201 research outputs found

    Open-access portal with hindcast wave data for SkÄne and Halland

    Get PDF
    Wave climate data for the Swedish provinces Skane and Halland, were hindcast using SWAN, a third-generation spectral wave model. The 40-year wave dataset, from 1979 to 2019, is made available through an open-access data portal (https://gis.sgi.se/vagmodell/). The wave data has a three-hour resolution and includes significant wave height, peak wave period, and wave direction. The wave model domain encompasses the Baltic Sea, Öresund, Kattegat, and Skagerrak. Along the coast of Skane and Halland, the spatial resolution of the computational nodes, from which data can be extracted in the portal, is 250 m. In the offshore areas, the resolution of the computational grid is coarser. The simulated significant wave height was validated against observations from 25 wave gauges, operating intermittently during the simulation period. The coefficient of determination, R2, for these comparisons ranged from 0.46 to 0.93 for the different stations. For 15 wave gauges, R2 values for the comparisons exceeded 0.80. The wave model will continuously be updated and developed

    Deglaciation of Fennoscandia

    Get PDF
    To provide a new reconstruction of the deglaciation of the Fennoscandian Ice Sheet, in the form of calendar-year time-slices, which are particularly useful for ice sheet modelling, we have compiled and synthesized published geomorphological data for eskers, ice-marginal formations, lineations, marginal meltwater channels, striae, ice-dammed lakes, and geochronological data from radiocarbon, varve, optically-stimulated luminescence, and cosmogenic nuclide dating. This 25 is summarized as a deglaciation map of the Fennoscandian Ice Sheet with isochrons marking every 1000 years between 22 and 13 cal kyr BP and every hundred years between 11.6 and final ice decay after 9.7 cal kyr BP. Deglaciation patterns vary across the Fennoscandian Ice Sheet domain, reflecting differences in climatic and geomorphic settings as well as ice sheet basal thermal conditions and terrestrial versus marine margins. For example, the ice sheet margin in the high-precipitation coastal setting of the western sector responded sensitively to climatic variations leaving a detailed record of prominent moraines and ice-marginal deposits in many fjords and coastal valleys. Retreat rates across the southern sector differed between slow retreat of the terrestrial margin in western and southern Sweden and rapid retreat of the calving ice margin in the Baltic Basin. Our reconstruction is consistent with much of the published research. However, the synthesis of a large amount of existing and new data support refined reconstructions in some areas. For example, we locate the LGM extent of the ice sheet in northwestern Russia further east than previously suggested and conclude that it occurred at a later time than the rest of the ice sheet, at around 17-15 cal kyr BP, and propose a slightly different chronology of moraine formation over southern Sweden based on improved correlations of moraine segments using new LiDAR data and tying the timing of moraine formation to Greenland ice core cold stages. Retreat rates vary by as much as an order of magnitude in different sectors of the ice sheet, with the lowest rates on the high-elevation and maritime Norwegian margin. Retreat rates compared to the climatic information provided by the Greenland ice core record show a general correspondence between retreat rate and climatic forcing, although a close match between retreat rate and climate is unlikely because of other controls, such as topography and marine versus terrestrial margins. Overall, the time slice reconstructions of Fennoscandian Ice Sheet deglaciation from 22 to 9.7 cal kyr BP provide an important dataset for understanding the contexts that underpin spatial and temporal patterns in retreat of the Fennoscandian Ice Sheet, and are an important resource for testing and refining ice sheet models

    Design and Effectiveness of a Required Pre-Clinical Simulation-based Curriculum for Fundamental Clinical Skills and Procedures

    Get PDF
    For more than 20 years, medical literature has increasingly documented the need for students to learn, practice and demonstrate competence in basic clinical knowledge and skills. In 2001, the Louisiana State University Health Science Centers (LSUHSC) School of Medicine – New Orleans replaced its traditional Introduction in to Clinical Medicine (ICM) course with the Science and Practice of Medicine (SPM) course. The main component within the SPM course is the Clinical Skills Lab (CSL). The CSL teaches 30 plus skills to all pre-clinical medical students (Years 1 and 2). Since 2002, an annual longitudinal evaluation questionnaire was distributed to all medical students targeting the skills taught in the CSL. Students were asked to rate their self- confidence (Dreyfus and Likert-type) and estimate the number of times each clinical skill was performed (clinically/non-clinically). Of the 30 plus skills taught, 8 were selected for further evaluation. An analysis was performed on the eight skills selected to determine the effectiveness of the CSL. All students that participated in the CSL reported a significant improvement in self-confidence and in number performed in the clinically/non-clinically setting when compared to students that did not experience the CSL. For example, without CSL training, the percentage of students reported at the end of their second year self-perceived expertise as “novice” ranged from 21.4% (CPR) to 84.7% (GU catheterization). Students who completed the two-years CSL, only 7.8% rated their self-perceived expertise at the end of the second year as “novice” and 18.8% for GU catheterization. The CSL design is not to replace real clinical patient experiences. It's to provide early exposure, medial knowledge, professionalism and opportunity to practice skills in a patient free environment

    Rapid post-glacial bedrock weathering in coastal Norway

    Get PDF
    Quantifying bedrock weathering rates under diverse climate conditions is essential to understanding timescales of landscape evolution. Yet, weathering rates are often difficult to constrain, and associating a weathered landform to a specific formative environment can be complicated by overprinting of successive processes and temporally varying climate. In this study, we investigate three sites between 59°N and 69°N along the Norwegian coast that display grussic saprolite, tafoni, and linear weathering grooves on diverse lithologies. These weathering phenomena have been invoked as examples of geomorphic archives predating Quaternary glaciations and consequently as indicators of minimal glacial erosion. Here we apply cosmogenic nuclide chronometry to assess the recent erosional history. Our results demonstrate that all three sites experienced sufficient erosion to remove most cosmogenic nuclides formed prior to the Last Glacial Maximum. This finding is inconsistent with preservation of surficial (<1–2 m) weathered landforms under non-erosive ice during the last glacial period, while simultaneously demonstrating that post-glacial weathering and erosion rates can be locally rapid (4–10 cm kyr−1) in cold temperate to subarctic coastal locations

    The role of viral genomics in understanding COVID-19 outbreaks in long-term care facilities

    Get PDF
    We reviewed all genomic epidemiology studies on COVID-19 in long-term care facilities (LTCFs) that had been published to date. We found that staff and residents were usually infected with identical, or near identical, SARS-CoV-2 genomes. Outbreaks usually involved one predominant cluster, and the same lineages persisted in LTCFs despite infection control measures. Outbreaks were most commonly due to single or few introductions followed by a spread rather than a series of seeding events from the community into LTCFs. The sequencing of samples taken consecutively from the same individuals at the same facilities showed the persistence of the same genome sequence, indicating that the sequencing technique was robust over time. When combined with local epidemiology, genomics allowed probable transmission sources to be better characterised. The transmission between LTCFs was detected in multiple studies. The mortality rate among residents was high in all facilities, regardless of the lineage. Bioinformatics methods were inadequate in a third of the studies reviewed, and reproducing the analyses was difficult because sequencing data were not available in many facilities

    B cell receptor repertoire kinetics after SARS-CoV-2 infection and vaccination

    Get PDF
    B cells are important in immunity to both severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and vaccination, but B cell receptor (BCR) repertoire development in these contexts has not been compared. We analyze serial samples from 171 SARS-CoV-2-infected individuals and 63 vaccine recipients and find the global BCR repertoire differs between them. Following infection, immunoglobulin (Ig)G1/3 and IgA1 BCRs increase, somatic hypermutation (SHM) decreases, and, in severe disease, IgM and IgA clones are expanded. In contrast, after vaccination, the proportion of IgD/M BCRs increase, SHM is unchanged, and expansion of IgG clones is prominent. VH1-24, which targets the N-terminal domain (NTD) and contributes to neutralization, is expanded post infection except in the most severe disease. Infection generates a broad distribution of SARS-CoV-2-specific clones predicted to target the spike protein, while a more focused response after vaccination mainly targets the spike's receptor-binding domain. Thus, the nature of SARS-CoV-2 exposure differentially affects BCR repertoire development, potentially informing vaccine strategies

    Screening of healthcare workers for SARS-CoV-2 highlights the role of asymptomatic carriage in COVID-19 transmission.

    Get PDF
    Significant differences exist in the availability of healthcare worker (HCW) SARS-CoV-2 testing between countries, and existing programmes focus on screening symptomatic rather than asymptomatic staff. Over a 3 week period (April 2020), 1032 asymptomatic HCWs were screened for SARS-CoV-2 in a large UK teaching hospital. Symptomatic staff and symptomatic household contacts were additionally tested. Real-time RT-PCR was used to detect viral RNA from a throat+nose self-swab. 3% of HCWs in the asymptomatic screening group tested positive for SARS-CoV-2. 17/30 (57%) were truly asymptomatic/pauci-symptomatic. 12/30 (40%) had experienced symptoms compatible with coronavirus disease 2019 (COVID-19)>7 days prior to testing, most self-isolating, returning well. Clusters of HCW infection were discovered on two independent wards. Viral genome sequencing showed that the majority of HCWs had the dominant lineage B∙1. Our data demonstrates the utility of comprehensive screening of HCWs with minimal or no symptoms. This approach will be critical for protecting patients and hospital staff.This work was supported by the Wellcome Trust Senior Research Fellowships 108070/Z/15/Z to MPW, 215515/Z/19/Z to SGB and 207498/Z/17/Z to IGG; Collaborative award 206298/B/17/Z to IGG; Principal Research Fellowship 210688/Z/18/Z to PJL; Investigator Award 200871/Z/16/Z to KGCS; Addenbrooke’s Charitable Trust (to MPW, SGB, IGG and PJL); the Medical Research Council (CSF MR/P008801/1 to NJM); NHS Blood and Transfusion (WPA15-02 to NJM); National Institute for Health Research (Cambridge Biomedical Research Centre at CUHNFT), to JRB, MET, AC and GD, Academy of Medical Sciences and the Health Foundation (Clinician Scientist Fellowship to MET), Engineering and Physical Sciences Research Council (EP/P031447/1 and EP/N031938/1 to RS),Cancer Research UK (PRECISION Grand Challenge C38317/A24043 award to JY). Components of this work were supported by the COVID-19 Genomics UK Consortium, (COG-UK), which is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institut

    The role of viral genomics in understanding COVID-19 outbreaks in long-term care facilities.

    Get PDF
    Funder: Biotechnology and Biological Sciences Research CouncilWe reviewed all genomic epidemiology studies on COVID-19 in long-term care facilities (LTCFs) that had been published to date. We found that staff and residents were usually infected with identical, or near identical, SARS-CoV-2 genomes. Outbreaks usually involved one predominant cluster, and the same lineages persisted in LTCFs despite infection control measures. Outbreaks were most commonly due to single or few introductions followed by a spread rather than a series of seeding events from the community into LTCFs. The sequencing of samples taken consecutively from the same individuals at the same facilities showed the persistence of the same genome sequence, indicating that the sequencing technique was robust over time. When combined with local epidemiology, genomics allowed probable transmission sources to be better characterised. The transmission between LTCFs was detected in multiple studies. The mortality rate among residents was high in all facilities, regardless of the lineage. Bioinformatics methods were inadequate in a third of the studies reviewed, and reproducing the analyses was difficult because sequencing data were not available in many facilities

    Morphological features and processes in the central Algarve rocky coast (South Portugal)

    Get PDF
    Morphological features along the Algarve rocky coast, South Portugal, are identified and described, with an emphasis on shore platforms and notches. The contributions of processes, such as wave attack, chemical weathering and bioerosion, to sculpting the shore platforms are discussed. The preferential localization of shore platforms on sites exposed to waves, and the lack of significant chemical weathering, point to wave erosion as the first-order factor in platform formation, whilst bioerosion/bioprotection, lithology and geological structure determine platform morphological variations. In addition, platforms above the present intertidal zone appear to have a polygenetic evolution, being inherited from former sea-level highstands and currently undergoing chemical weathering. The occurrence of notch features is independent of the degree of exposure to waves, but they mostly occur where the substratum is sand. Hydrostatic pressure appears to be an important factor in the formation of marine caves in the more sheltered sites.Fundação para a CiĂȘncia e a Tecnologia. COCHAL Project (POCTI/34162/CTA/00

    Combined Point-of-Care Nucleic Acid and Antibody Testing for SARS-CoV-2 following Emergence of D614G Spike Variant

    Get PDF
    Rapid COVID-19 diagnosis in the hospital is essential, although this is complicated by 30%-50% of nose/throat swabs being negative by SARS-CoV-2 nucleic acid amplification testing (NAAT). Furthermore, the D614G spike mutant dominates the pandemic and it is unclear how serological tests designed to detect anti-spike antibodies perform against this variant. We assess the diagnostic accuracy of combined rapid antibody point of care (POC) and nucleic acid assays for suspected COVID-19 disease due to either wild-type or the D614G spike mutant SARS-CoV-2. The overall detection rate for COVID-19 is 79.2% (95% CI 57.8-92.9) by rapid NAAT alone. The combined point of care antibody test and rapid NAAT is not affected by D614G and results in very high sensitivity for COVID-19 diagnosis with very high specificity
    • 

    corecore