44 research outputs found

    Neutrino Large Mixing in Universal Yukawa Coupling Model with Small Violation

    Full text link
    We have analyzed the possibility that the universal Yukawa coupling (democratic mass matrix) with small violations of Dirac and Majorana neutrinos can induce the large mixing of neutrinos through the seesaw mechanism. The possibility can be achieved by the condition that the violation parameters of Majorana neutrinos are sufficiently smaller than the violation parameters of Dirac neutrinos. Allowed regions of the violation parameters producing the observed neutrino mass hierarchy and large neutrino mixing are not so restricted at present in contrast to the violation parameters for quark sector.Comment: 14 pages, 4figure

    Symmetries and fermion masses

    Get PDF
    We discuss whether quark, charged lepton and neutrino masses and mixing angles may be related by an extended flavour and family symmetry group. We show that current measurements of all fermion masses and mixing angles are consistent with a combination of an underlying SU(3) family symmetry together with a GUT symmetry such as SO(10). In this the near bi-maximal mixing observed in the neutrino sector is directly related to the small mixing observed in the quark sector, the difference between quark and lepton mixing angles being due to the see-saw mechanism. Using this connection we make a detailed prediction for the lepton mixing angles determining neutrino oscillation phenomena.Comment: 24 pages, 1 figure. To be submitted to Nucl. Phys.

    Which came first: The disease or the pest? Is there a host mediated spread of Beauveria bassiana (Ascomycota: Hypocreales) by invasive palm pests?

    Get PDF
    The red palm weevil (RPW) Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) is threatening the palm family worldwide, causing important economic losses. Current tactics to manage the weevil are largely based on chemical control, although the use of pesticides is hampered by several environmental constraints. Since the first introduction of RPW in Spain in 1996 and during its progressive spread around the Mediterranean basin, the number of reports of natural infection of RPW populations by entomopathogenic fungi (EPF) has been rising for 15 years, and this rise could support a pest-mediated EPF spread. To challenge this hypothesis, we assessed the usefulness of the region of elongation factor 1-alpha (EF1-alpha), Bloc nuclear intergenic region (Bloc) and inter simple sequence repeat (ISSR) markers, alone or in combination, to infer the relationships among Mediterranean Beauveria and Metarhizium strains isolated from the RPW. Second, the effect of abiotic factors, such as temperature, humidity and UV-B radiation, on the germination and growth of these EPFs strains as a function of their genealogy and geographic origin were determined. Finally, the pathogenicity of strains from different genetic clades was evaluated against larvae and adults of R. ferrugineus. The phylogenetic analysis based on the EF-1 alpha gene identified eight different sequences among 24 fungal isolates of four fungal species. Similar clades were clustered when Bloc and ISSR analyses were performed. The results showed that strains of different origins were clustered in the same Glade, and this outcome could be explained by an RPW-mediated EPF spread that was also influenced by time, geographical and other RPW related factors. Neither the response to abiotic factors nor virulence to RPW larvae and adults were related to the sequence type, with all B. bassiana strains well adapted to Mediterraneam climatic conditions. Taken together, these findings may help to select the best strain for RPW management

    CP and Lepton-Number Violation in GUT Neutrino Models with Abelian Flavour Symmetries

    Get PDF
    We study the possible magnitudes of CP and lepton-number-violating quantities in specific GUT models of massive neutrinos with different Abelian flavour groups, taking into account experimental constraints and requiring successful leptogenesis. We discuss SU(5) and flipped SU(5) models that are consistent with the present data on neutrino mixing and upper limits on the violations of charged-lepton flavours and explore their predictions for the CP-violating oscillation and Majorana phases. In particular, we discuss string-derived flipped SU(5) models with selection rules that modify the GUT structure and provide additional constraints on the operators, which are able to account for the magnitudes of some of the coefficients that are often set as arbitrary parameters in generic Abelian models.Comment: 30 pages, 6 figure

    Phenomenology of Pseudo Dirac Neutrinos

    Get PDF
    We formulate general conditions on 3×33\times 3 neutrino mass matrices under which a degenerate pair of neutrinos at a high scale would split at low scale by radiative corrections involving only the standard model fields. This generalizes the original observations of Wolfenstein on pseudo Dirac neutrinos to three generations. A specific model involving partially broken discrete symmetry and solving the solar and atmospheric anomalies is proposed. The symmetry pattern of the model naturally generates two large angles one of which can account for the large angle MSW solution to the solar neutrino problem.Comment: 15 pages LATE

    Neutrino masses and mixing with seesaw mechanism and universal breaking of extended democracy

    Get PDF
    In the framework of a minimal extension of the SM, where the only additional fields are three right-handed neutrinos, we suggest that the charged lepton, the Dirac neutrino and the right-handed Majorana neutrino mass matrices are all, to leading approximation, proportional to the democratic matrix. With the further assumption that the breaking of this extended democracy is universal for all leptonic mass matrices, a large mixing in the 2-3 sector can be obtained and is linked to the seesaw mechanism, together with the existence of a strong hierarchy in the masses of right-handed neutrinos. The structure of the resulting effective mass matrix of light neutrinos is stable against the RGE evolution, and a good fit to all solar and atmospheric neutrino data is obtained.Comment: LaTeX, 17 pages, 2 eps figures. A section on RGE evolution and a few references added; minor typos correcte

    Leptogenesis, CP violation and neutrino data: What can we learn?

    Get PDF
    A detailed analytic and numerical study of baryogenesis through leptogenesis is performed in the framework of the standard model of electroweak interactions extended by the addition of three right-handed neutrinos, leading to the seesaw mechanism. We analyze the connection between GUT-motivated relations for the quark and lepton mass matrices and the possibility of obtaining a viable leptogenesis scenario. In particular, we analyze whether the constraints imposed by SO(10) GUTs can be compatible with all the available solar, atmospheric and reactor neutrino data and, simultaneously, be capable of producing the required baryon asymmetry via the leptogenesis mechanism. It is found that the Just-So^2 and SMA solar solutions lead to a viable leptogenesis even for the simplest SO(10) GUT, while the LMA, LOW and VO solar solutions would require a different hierarchy for the Dirac neutrino masses in order to generate the observed baryon asymmetry. Some implications on CP violation at low energies and on neutrinoless double beta decay are also considered.Comment: 36 pages, 6 figures; new references added, final version to appear in Nucl. Phys.

    Supersymmetric Grand Unification and Lepton Universality in K-> l \nu Decays

    Full text link
    Motivated by the prospects for an improved test of lepton universality in K -> l \nu decays by the NA62 experiment at CERN, we study predictions for the possible lepton non-universality in K -> l \nu decays in supersymmetric models. Violations of \mu-e universality in this process may originate from mixing effects in the right-handed slepton sector, providing a unique window into this aspect of supersymmetric flavour physics in the large-\tan\beta region. Minimal unification scenarios with universal soft supersymmetry-breaking terms at the GUT scale would predict negligible violation of lepton universality. However, lepton non-universality may be observable in non-minimal grand unified models with higher-dimensional terms contributing to fermion masses, in which case renormalization effects above the GUT scale may enhance the mixing among the right-handed sleptons. This could leads to observable lepton non-universality in K -> l \nu decays in specific regions of the parameter space with high \tan \beta, large A terms and small charged Higgs boson mass. Observable non-universality in K -> l \nu decays would be correlated with a large value of BR(\tau -> e \gamma). The experimental upper limit on the electric dipole moment of the electron could be reconciled with leptogenesis, if the latter occurs at a relatively low scale, which would also alleviate the cosmological gravitino problem. Even if lepton non-universality is not seen in the near future, one may nevertheless obtain significant constraints on the model parameters and unknown aspects of right-handed fermion and sfermion mixing.Comment: 19 pages, 3 figure

    Neutrino Masses and Mixings from Supersymmetry with Bilinear R--Parity Violation: A Theory for Solar and Atmospheric Neutrino Oscillations

    Get PDF
    The simplest unified extension of the MSSM with bi-linear R--Parity violation naturally predicts a hierarchical neutrino mass spectrum, in which one neutrino acquires mass by mixing with neutralinos, while the other two get mass radiatively. We have performed a full one-loop calculation of the neutralino-neutrino mass matrix in the bi-linear \rp MSSM, taking special care to achieve a manifestly gauge invariant calculation. Moreover we have performed the renormalization of the heaviest neutrino, needed in order to get meaningful results. The atmospheric mass scale and maximal mixing angle arise from tree-level physics, while solar neutrino scale and oscillations follow from calculable one-loop corrections. If universal supergravity assumptions are made on the soft-supersymmetry breaking terms then the atmospheric scale is calculable as a function of a single \rp violating parameter by the renormalization group evolution due to the non-zero bottom quark Yukawa coupling. The solar neutrino problem must be accounted for by the small mixing angle (SMA) MSW solution. If these assumptions are relaxed then one can implement large mixing angle solutions, either MSW or just-so. The theory predicts the lightest supersymmetic particle (LSP) decay to be observable at high-energy colliders, despite the smallness of neutrino masses indicated by experiment. This provides an independent way to test this solution of the atmospheric and solar neutrino anomalies.Comment: 46 pages, references added + several misprints correcte
    corecore