111 research outputs found

    BMC Geriatr

    Get PDF
    BACKGROUND: With the global population aging and life expectancy increasing, dementia has turned a priority in the health care system. In Chile, dementia is one of the most important causes of disability in the elderly and the most rapidly growing cause of death in the last 20 years. Cognitive complaint is considered a predictor for cognitive and functional decline, incident mild cognitive impairment, and incident dementia. The GERO cohort is the Chilean core clinical project of the Geroscience Center for Brain Health and Metabolism (GERO). The objective of the GERO cohort is to analyze the rate of functional decline and progression to clinical dementia and their associated risk factors in a community-dwelling elderly with subjective cognitive complaint, through a population-based study. We also aim to undertake clinical research on brain ageing and dementia disorders, to create data and biobanks with the appropriate infrastructure to conduct other studies and facilitate to the national and international scientific community access to the data and samples for research. METHODS: The GERO cohort aims the recruitment of 300 elderly subjects (> 70 years) from Santiago (Chile), following them up for at least 3 years. Eligible people are adults not diagnosed with dementia with subjective cognitive complaint, which are reported either by the participant, a proxy or both. Participants are identified through a household census. The protocol for evaluation is based on a multidimensional approach including socio-demographic, biomedical, psychosocial, neuropsychological, neuropsychiatric and motor assessments. Neuroimaging, blood and stool samples are also obtained. This multidimensional evaluation is carried out in a baseline and 2 follow-ups assessments, at 18 and 36 months. In addition, in months 6, 12, 24, and 30, a telephone interview is performed in order to keep contact with the participants and to assess general well-being. DISCUSSION: Our work will allow us to determine multidimensional risks factors associated with functional decline and conversion to dementia in elderly with subjective cognitive complain. The aim of our GERO group is to establish the capacity to foster cutting edge and multidisciplinary research on aging in Chile including basic and clinical research. TRIAL REGISTRATION: NCT04265482 in ClinicalTrials.gov. Registration Date: February 11, 2020. Retrospectively Registered

    Tubulin Tyrosination Is Required for the Proper Organization and Pathfinding of the Growth Cone

    Get PDF
    International audienceBACKGROUND: During development, neuronal growth cones integrate diffusible and contact guidance cues that are conveyed to both actin and microtubule (MT) cytoskeletons and ensure axon outgrowth and pathfinding. Although several post-translational modifications of tubulin have been identified and despite their strong conservation among species, their physiological roles during development, especially in the nervous sytem, are still poorly understood. METHODOLOGY/FINDINGS: Here, we have dissected the role of a post-translational modification of the last amino acid of the alpha-tubulin on axonal growth by analyzing the phenotype of precerebellar neurons in Tubulin tyrosin ligase knock-out mice (TTL(-/-)) through in vivo, ex vivo and in vitro analyses. TTL(-/-) neurons are devoid of tyrosinated tubulin. Their pathway shows defects in vivo, ex vivo, in hindbrains open-book preparations or in vitro, in a collagen matrix. Their axons still orient toward tropic cues, but they emit supernumerary branches and their growth cones are enlarged and exhibit an emission of mis-oriented filopodia. Further analysis of the TTL(-/-) growth cone intracellular organization also reveals that the respective localization of actin and MT filaments is disturbed, with a decrease in the distal accumulation of Myosin IIB, as well as a concomitant Rac1 over-activation in the hindbrain. Pharmacological inhibition of Rac1 over-activation in TTL(-/-) neurons can rescue Myosin IIB localization. CONCLUSIONS/SIGNIFICANCE: In the growth cone, we propose that tubulin tyrosination takes part in the relative arrangement of actin and MT cytoskeletons, in the regulation of small GTPases activity, and consequently, in the proper morphogenesis, organization and pathfinding of the growth cone during development

    Effect of methylene blue on the genomic response to reperfusion injury induced by cardiac arrest and cardiopulmonary resuscitation in porcine brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral ischemia/reperfusion injury is a common secondary effect of cardiac arrest which is largely responsible for postresuscitative mortality. Therefore development of therapies which restore and protect the brain function after cardiac arrest is essential. Methylene blue (MB) has been experimentally proven neuroprotective in a porcine model of global ischemia-reperfusion in experimental cardiac arrest. However, no comprehensive analyses have been conducted at gene expression level.</p> <p>Methods</p> <p>Pigs underwent either untreated cardiac arrest (CA) or CA with subsequent cardiopulmonary resuscitation (CPR) accompanied with an infusion of saline or an infusion of saline with MB. Genome-wide transcriptional profiling using the Affymetrix porcine microarray was performed to 1) gain understanding of delayed neuronal death initiation in porcine brain during ischemia and after 30, 60 and 180 min following reperfusion, and 2) identify the mechanisms behind the neuroprotective effect of MB after ischemic injury (at 30, 60 and 180 min).</p> <p>Results</p> <p>Our results show that restoration of spontaneous circulation (ROSC) induces major transcriptional changes related to stress response, inflammation, apoptosis and even cytoprotection. In contrast, the untreated ischemic and anoxic insult affected only few genes mainly involved in intra-/extracellular ionic balance. Furthermore, our data show that the neuroprotective role of MB is diverse and fulfilled by regulation of the expression of soluble guanylate cyclase and biological processes accountable for inhibition of apoptosis, modulation of stress response, neurogenesis and neuroprotection.</p> <p>Conclusions</p> <p>Our results support that MB could be a valuable intervention and should be investigated as a therapeutic agent against neural damage associated with I/R injury induced by cardiac arrest.</p

    Expansion cone for the 3-inch PMTs of the KM3NeT optical modules

    Full text link
    [EN] Detection of high-energy neutrinos from distant astrophysical sources will open a new window on the Universe. The detection principle exploits the measurement of Cherenkov light emitted by charged particles resulting from neutrino interactions in the matter containing the telescope. A novel multi-PMT digital optical module (DOM) was developed to contain 31 3-inch photomultiplier tubes (PMTs). In order to maximize the detector sensitivity, each PMT will be surrounded by an expansion cone which collects photons that would otherwise miss the photocathode. Results for various angles of incidence with respect to the PMT surface indicate an increase in collection efficiency by 30% on average for angles up to 45 degrees with respect to the perpendicular. Ray-tracing calculations could reproduce the measurements, allowing to estimate an increase in the overall photocathode sensitivity, integrated over all angles of incidence, by 27% (for a single PMT). Prototype DOMs, being built by the KM3NeT consortium, will be equipped with these expansion cones.This work is supported through the EU, FP6 Contract no. 011937, FP7 grant agreement no. 212252, and the Dutch Ministry of Education, Culture and Science.Adrián Martínez, S.; Ageron, M.; Aguilar, JA.; Aharonian, F.; Aiello, S.; Albert, A.; Alexandri, M.... (2013). Expansion cone for the 3-inch PMTs of the KM3NeT optical modules. Journal of Instrumentation. 8(3):1-19. https://doi.org/10.1088/1748-0221/8/03/T03006S1198

    Dementia in Latin America : paving the way towards a regional action plan

    Get PDF
    Regional challenges faced by Latin American and Caribbean countries (LACs) to fight dementia, such as heterogeneity, diversity, political instabilities, and socioeconomic disparities, can be addressed more effectively grounded in a collaborative setting based on the open exchange of knowledge. In this work, the Latin American and Caribbean Consortium on Dementia (LAC-CD) proposes an agenda for integration to deliver a Knowledge to Action Framework (KtAF). First, we summarize evidence-based strategies (epidemiology, genetics, biomarkers, clinical trials, nonpharmacological interventions, networking and translational research) and align them to current global strategies to translate regional knowledge into actions with transformative power. Then, by characterizing genetic isolates, admixture in populations, environmental factors, and barriers to effective interventions and mapping these to the above challenges, we provide the basic mosaics of knowledge that will pave the way towards a KtAF. We describe strategies supporting the knowledge creation stage that underpins the translational impact of KtAF

    Molecular genetic approaches to microtubule-associated protein function

    Get PDF
    Protein function in vivo can be studied by deleting (knock-out) the gene that encodes it, and search for the consequences. This procedure involves different technologies, including recombinant DNA procedures, cell biology methods and histological and immunocytochemical analysis.In this work we have reviewed these procedures when they have been applied to ascertain the function of several microtubule-associated proteins. These proteins have been previously involved, through in vitro experiments, in having a role in the microtubule stabilization. Here, we will summarize the generation and characterization of different microtubule-associated protein knock-out mice. Special attention will be paid to MAPlB knock-out mice. Amongst the different MAPs knock-out mice these show the strongest phenotype, the most likely for being MAPlB, the MAP that is expressed earliest in neurogenesis.Molecular genetics could be considered as a valid and useful procedure to truly establish the in vivo functions of a protein, although it is necessary to be aware of possible artifacts such as the generation of some kinds of RNA alternative splicing. To avoid this the best strategy to be used must consider the deletion of the exon that contains the functional domains of the protein

    Molecular genetic approaches to microtubule-associated protein function

    No full text
    Protein function in vivo can be studied by deleting (knock-out) the gene that encodes it, and search for the consequences. This procedure involves different technologies, including recombinant DNA procedures, cell biology methods and histological and immunocytochemical analysis. In this work we have reviewed these procedures when they have been applied to ascertain the function of several microtubule-associated proteins. These proteins have been previously involved, through in vitro experiments, in having a role in the microtubule stabilization. Here, we will summarize the generation and characterization of different microtubule-associated protein knock-out mice. Special attention will be paid to MAPlB knock-out mice. Amongst the different MAPs knock-out mice these show the strongest phenotype, the most likely for being MAPlB, the MAP that is expressed earliest in neurogenesis. Molecular genetics could be considered as a valid and useful procedure to truly establish the in vivo functions of a protein, although it is necessary to be aware of possible artifacts such as the generation of some kinds of RNA alternative splicing. To avoid this the best strategy to be used must consider the deletion of the exon that contains the functional domains of the protein
    corecore