46 research outputs found

    Depth of thermal penetration in straight grinding

    Get PDF
    Unlike the usual numerical FEM approach to determine the thermally affected layer during the grinding process, we propose a simple analytical approach to estimate the depth of thermal penetration. For this purpose, the one-dimensional definition of depth of thermal penetration is applied to the two-dimensional heat transfer models of straight grinding. A method for computing the depth of thermal penetration in these two-dimensional models is derived and compared to the one-dimensional approximation. For dry grinding, it turns out that the one-dimensional approximation is quite accurate when we consider a moderate percentage in the temperature fall beneath the surface, regardless the type of heat flux profile entering into the workpiece (i.e., constant, linear, triangular, or parabolic). In wet grinding, the latter is true if we consider a constant heat flux profile and a high Peclet number, i.e., Pe > 5. Finally, the one- and two-dimensional approaches calculating analytically the depth of thermal penetration have been compared to the temperature field numerically evaluated by a three-dimensional FEM simulation given in the literature, obtaining a quite good agreement

    Teaching classical mechanics using an applied example: Modelling and Software

    Full text link
    [EN] We present our experience in using a common mechanism in engineering, such as a slider-crank, to explain classical mechanics in physics and engineering degrees. We also present a graphical user interface that permits the student to visualize the results of different simulations varying the conditions of the numerical experiment.[ES] Presentamos la experiencia docente obtenida al utilizar un mecanismo muy común en ingeniería, como el mecanismo biela-manivela-deslizadera, como un ejemplo práctico en la asignatura ”mecánica clásica” que se imparte en los grados de física e ingeniería. También presentamos una interfaz gráfica que permite al estudiante visualizar los resultados obtenidos al simular en el ordenador el movimiento de dicho mecanismo variando las condiciones en las que se realiza el experimento numérico.García-March, M.; Isidro, J.; Zacarés, M.; Arevalillo, M.; González-Santander, J.; Monreal, L.; López-Javier, C. (2009). Teaching classical mechanics using an applied example: Modelling and Software. Modelling in Science Education and Learning. 2:35-43. doi:10.4995/msel.2009.3116SWORD35432H.Goldstein, Mecánica Clásica. Ed. Reverté, Barcelona, (1987). C.Lanczos, The variational principles of mechanics. Dover, New York, (1986).M.A. García-March, I. Orquín, P. Fernández de Córdoba, A. Montero, J. Urchueguía, M.H. Giménez y J.A. Monsoriu, Formulación Lagrangiana del Sistema Biela-Manivela- Deslizadera. Anales de Ingeniería Mecánica. Revista de la Asociación Espa-ola de Ingeniería Mecánica. 2 1077-1086 (2004)

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio

    The Great Markarian 421 Flare of 2010 February: Multiwavelength Variability and Correlation Studies

    Get PDF
    We report on variability and correlation studies using multiwavelength observations of the blazar Mrk 421 during the month of 2010 February, when an extraordinary flare reaching a level of ∼27 Crab Units above 1 TeV was measured in very high energy (VHE) γ-rays with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory. This is the highest flux state for Mrk 421 ever observed in VHE γ-rays. Data are analyzed from a coordinated campaign across multiple instruments, including VHE γ-ray (VERITAS, Major Atmospheric Gamma-ray Imaging Cherenkov), high-energy γ-ray (Fermi-LAT), X-ray (Swift, Rossi X-ray Timing Experiment, MAXI), optical (including the GASP-WEBT collaboration and polarization data), and radio (Metsahovi, Owens Valley Radio Observatory, University of Michigan Radio Astronomy Observatory). Light curves are produced spanning multiple days before and after the peak of the VHE flare, including over several flare "decline" epochs. The main flare statistics allow 2 minute time bins to be constructed in both the VHE and optical bands enabling a cross-correlation analysis that shows evidence for an optical lag of ∼25-55 minutes, the first time-lagged correlation between these bands reported on such short timescales. Limits on the Doppler factor (δ ⪆ 33) and the size of the emission region (δ-1RB≲ 3.8 × 1013cm) are obtained from the fast variability observed by VERITAS during the main flare. Analysis of 10 minute binned VHE and X-ray data over the decline epochs shows an extraordinary range of behavior in the flux-flux relationship, from linear to quadratic to lack of correlation to anticorrelation. Taken together, these detailed observations of an unprecedented flare seen in Mrk 421 are difficult to explain with the classic single-zone synchrotron self-Compton model.</p

    La Regla de Simpson con Mallados Generales e Integrales Impropias

    Full text link
    [ES] En el presente artículo se generaliza la conocida regla de integración numérica de Simpson, para mallados de cualquier tipo. . Particularizando para mallados lineales, se recupera la conocida regla de Simpson. Se deduce una expresión para mallados exponenciales y se aplica al cálculo de integrales impropias. Se contrastan los resultados obtenidos con los calculados de manera exacta, constatándose un error relativo del mismo orden de magnitud que la tolerancia en el criterio de parada.[EN] The present article generalizes the known rule of Simpson¿s numeric integration, for meshes of any type. The well known Simpson¿s Rule could be obtain with a particularizing it for linear meshes. It deduces an expression for exponential meshes and it is applied to the calculation of inappropriate integrals. The obtained results are compared with the calculated in exact way, proving a relative error in the same magnitude order than the tolerance for the stop¿s criteria.González-Santander, J.; Isidro San Juan, JM.; García-March, M.; Fernández De Córdoba, P.; Acosta Iglesias, D. (2010). La Regla de Simpson con Mallados Generales e Integrales Impropias. BOLETIN DE LA SOCIEDAD CUBANA DE MATEMATICA Y COMPUTACIÓN. 8(1):21-33. http://hdl.handle.net/10251/104812S21338

    The Great Markarian 421 Flare of 2010 February: Multiwavelength Variability and Correlation Studies

    No full text
    © 2020. The American Astronomical Society. All rights reserved. We report on variability and correlation studies using multiwavelength observations of the blazar Mrk 421 during the month of 2010 February, when an extraordinary flare reaching a level of ∼27 Crab Units above 1 TeV was measured in very high energy (VHE) γ-rays with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory. This is the highest flux state for Mrk 421 ever observed in VHE γ-rays. Data are analyzed from a coordinated campaign across multiple instruments, including VHE γ-ray (VERITAS, Major Atmospheric Gamma-ray Imaging Cherenkov), high-energy γ-ray (Fermi-LAT), X-ray (Swift, Rossi X-ray Timing Experiment, MAXI), optical (including the GASP-WEBT collaboration and polarization data), and radio (Metsahovi, Owens Valley Radio Observatory, University of Michigan Radio Astronomy Observatory). Light curves are produced spanning multiple days before and after the peak of the VHE flare, including over several flare "decline" epochs. The main flare statistics allow 2 minute time bins to be constructed in both the VHE and optical bands enabling a cross-correlation analysis that shows evidence for an optical lag of ∼25-55 minutes, the first time-lagged correlation between these bands reported on such short timescales. Limits on the Doppler factor (δ ⪆ 33) and the size of the emission region (δ-1RB≲ 3.8 × 1013cm) are obtained from the fast variability observed by VERITAS during the main flare. Analysis of 10 minute binned VHE and X-ray data over the decline epochs shows an extraordinary range of behavior in the flux-flux relationship, from linear to quadratic to lack of correlation to anticorrelation. Taken together, these detailed observations of an unprecedented flare seen in Mrk 421 are difficult to explain with the classic single-zone synchrotron self-Compton model

    Broadband Multi-wavelength Properties of M87 during the 2018 EHT Campaign including a Very High Energy Flaring Episode

    No full text
    International audienceThe nearby elliptical galaxy M87 contains one of the only two supermassive black holes whose emission surrounding the event horizon has been imaged by the Event Horizon Telescope (EHT). In 2018, more than two dozen multi-wavelength (MWL) facilities (from radio to gamma-ray energies) took part in the second M87 EHT campaign. The goal of this extensive MWL campaign was to better understand the physics of the accreting black hole M87*, the relationship between the inflow and inner jets, and the high-energy particle acceleration. Understanding the complex astrophysics is also a necessary first step towards performing further tests of general relativity. The MWL campaign took place in April 2018, overlapping with the EHT M87* observations. We present a new, contemporaneous spectral energy distribution (SED) ranging from radio to very high energy (VHE) gamma-rays, as well as details of the individual observations and light curves. We also conduct phenomenological modelling to investigate the basic source properties. We present the first VHE gamma-ray flare from M87 detected since 2010. The flux above 350 GeV has more than doubled within a period of about 36 hours. We find that the X-ray flux is enhanced by about a factor of two compared to 2017, while the radio and millimetre core fluxes are consistent between 2017 and 2018. We detect evidence for a monotonically increasing jet position angle that corresponds to variations in the bright spot of the EHT image. Our results show the value of continued MWL monitoring together with precision imaging for addressing the origins of high-energy particle acceleration. While we cannot currently pinpoint the precise location where such acceleration takes place, the new VHE gamma-ray flare already presents a challenge to simple one-zone leptonic emission model approaches, and emphasises the need for combined image and spectral modelling

    Broadband Multi-wavelength Properties of M87 during the 2018 EHT Campaign including a Very High Energy Flaring Episode

    No full text
    International audienceThe nearby elliptical galaxy M87 contains one of the only two supermassive black holes whose emission surrounding the event horizon has been imaged by the Event Horizon Telescope (EHT). In 2018, more than two dozen multi-wavelength (MWL) facilities (from radio to gamma-ray energies) took part in the second M87 EHT campaign. The goal of this extensive MWL campaign was to better understand the physics of the accreting black hole M87*, the relationship between the inflow and inner jets, and the high-energy particle acceleration. Understanding the complex astrophysics is also a necessary first step towards performing further tests of general relativity. The MWL campaign took place in April 2018, overlapping with the EHT M87* observations. We present a new, contemporaneous spectral energy distribution (SED) ranging from radio to very high energy (VHE) gamma-rays, as well as details of the individual observations and light curves. We also conduct phenomenological modelling to investigate the basic source properties. We present the first VHE gamma-ray flare from M87 detected since 2010. The flux above 350 GeV has more than doubled within a period of about 36 hours. We find that the X-ray flux is enhanced by about a factor of two compared to 2017, while the radio and millimetre core fluxes are consistent between 2017 and 2018. We detect evidence for a monotonically increasing jet position angle that corresponds to variations in the bright spot of the EHT image. Our results show the value of continued MWL monitoring together with precision imaging for addressing the origins of high-energy particle acceleration. While we cannot currently pinpoint the precise location where such acceleration takes place, the new VHE gamma-ray flare already presents a challenge to simple one-zone leptonic emission model approaches, and emphasises the need for combined image and spectral modelling

    Broadband Multi-wavelength Properties of M87 during the 2018 EHT Campaign including a Very High Energy Flaring Episode

    No full text
    International audienceThe nearby elliptical galaxy M87 contains one of the only two supermassive black holes whose emission surrounding the event horizon has been imaged by the Event Horizon Telescope (EHT). In 2018, more than two dozen multi-wavelength (MWL) facilities (from radio to gamma-ray energies) took part in the second M87 EHT campaign. The goal of this extensive MWL campaign was to better understand the physics of the accreting black hole M87*, the relationship between the inflow and inner jets, and the high-energy particle acceleration. Understanding the complex astrophysics is also a necessary first step towards performing further tests of general relativity. The MWL campaign took place in April 2018, overlapping with the EHT M87* observations. We present a new, contemporaneous spectral energy distribution (SED) ranging from radio to very high energy (VHE) gamma-rays, as well as details of the individual observations and light curves. We also conduct phenomenological modelling to investigate the basic source properties. We present the first VHE gamma-ray flare from M87 detected since 2010. The flux above 350 GeV has more than doubled within a period of about 36 hours. We find that the X-ray flux is enhanced by about a factor of two compared to 2017, while the radio and millimetre core fluxes are consistent between 2017 and 2018. We detect evidence for a monotonically increasing jet position angle that corresponds to variations in the bright spot of the EHT image. Our results show the value of continued MWL monitoring together with precision imaging for addressing the origins of high-energy particle acceleration. While we cannot currently pinpoint the precise location where such acceleration takes place, the new VHE gamma-ray flare already presents a challenge to simple one-zone leptonic emission model approaches, and emphasises the need for combined image and spectral modelling
    corecore