150 research outputs found

    Neutron induced reactions on radioactive beryllium and argon isotopes

    Get PDF
    The preparation of radioactive 10^{10}Be, 37 ⁣^{37}\!Ar and 39 ⁣^{39}\!Ar samples is discussed. Investigation of the 10^{10}Be(nth,γ_{th} , \gamma)11 ⁣^{11}\!Be , 37^{37}Ar(nth,α_{th} , \alpha)34^{34}S , 37^{37}Ar(nth_{th} , p)37 ⁣^{37}\!Cl and 39 ⁣^{39}\!Ar(nth,α_{th} , \alpha)36^{36}S reactions is reported, and resonances in the 37^{37}Ar(n , α\alpha)34^{34}S reaction have been observed and analysed

    Thermal neutron induced (n,p) and (n,alpha) reactions on 37Ar

    Full text link
    The 37Ar(n_th,alpha)34S and 37Ar(n_th,p)37Cl reactions were studied at the high flux reactor of the ILL in Grenoble. For the 37Ar(n_th,alpha_0) and 37Ar(n_th,p) reaction cross sections, values of (1070+/-80)b and (37+/-4)b, respectively, were obtained. Both values are about a factor 2 smaller than results of older measurements. The observed suppression of the 37(n_th,alpha_1) transition could be verified from theoretical considerations. Finally, evidence was found for the two-step 37Ar(n_th,gamma-alpha) process.Comment: 11 pages, 5 figures, accepted for publication in Nuclear Physics

    Energy distributions and yields of 3H, 4He and 6He-particles emitted in the 245Cm(n_th,f) reaction

    Get PDF
    The energy distributions and yields of light charged particles emitted during thermal neutron induced fission of 245Cm have been measured at the high flux reactor of the Institute Laue Langevin in Grenoble (France). The detection of the ternary particles was done using a Delta-E/E telescope, permitting a good separation of the ternary particles. In this way, the characteristics of the energy distribution (average energy and full width at half maximum) for 4He, 3H and 6He particles as well as their emission probabilities could be determined. For the emission probabilities per fission, the following values were obtained: LRA/B=(2.15+-0.05)E-3, 3H/B=(1.85+-0.10)E-4 and 6He/B=(4.95+-1.25)E-5

    Gitana: a SQL-based Git Repository Inspector

    Get PDF
    International audienceSoftware development projects are notoriously complex and difficult to deal with. Several support tools such as issue tracking, code review and Source Control Management (SCM) systems have been introduced in the past decades to ease development activities. While such tools efficiently track the evolution of a given aspect of the project (e.g., bug reports), they provide just a partial view of the project and often lack of advanced querying mechanisms limiting themselves to command line or simple GUI support. This is particularly true for projects that rely on Git, the most popular SCM system today. In this paper, we propose a conceptual schema for Git and an approach that, given a Git repository, exports its data to a relational database in order to (1) promote data integration with other existing SCM tools and (2) enable writing queries on Git data using standard SQL syntax. To ensure efficiency, our approach comes with an incremental propagation mechanism that refreshes the database content with the latest modifications. We have implemented our approach in Gitana, an open-source tool available on GitHub

    Potential application of digitally linked tuberculosis diagnostics for real-time surveillance of drug-resistant tuberculosis transmission: Validation and analysis of test results

    Get PDF
    YesBackground: Tuberculosis (TB) is the highest-mortality infectious disease in the world and the main cause of death related to antimicrobial resistance, yet its surveillance is still paper-based. Rifampicin-resistant TB (RR-TB) is an urgent public health crisis. The World Health Organization has, since 2010, endorsed a series of rapid diagnostic tests (RDTs) that enable rapid detection of drug-resistant strains and produce large volumes of data. In parallel, most high-burden countries have adopted connectivity solutions that allow linking of diagnostics, real-time capture, and shared repository of these test results. However, these connected diagnostics and readily available test results are not used to their full capacity, as we have yet to capitalize on fully understanding the relationship between test results and specific rpoB mutations to elucidate its potential application to real-time surveillance. Objective: We aimed to validate and analyze RDT data in detail, and propose the potential use of connected diagnostics and associated test results for real-time evaluation of RR-TB transmission. Methods: We selected 107 RR-TB strains harboring 34 unique rpoB mutations, including 30 within the rifampicin resistance–determining region (RRDR), from the Belgian Coordinated Collections of Microorganisms, Antwerp, Belgium. We subjected these strains to Xpert MTB/RIF, GenoType MTBDRplus v2.0, and Genoscholar NTM + MDRTB II, the results of which were validated against the strains’ available rpoB gene sequences. We determined the reproducibility of the results, analyzed and visualized the probe reactions, and proposed these for potential use in evaluating transmission. Results: The RDT probe reactions detected most RRDR mutations tested, although we found a few critical discrepancies between observed results and manufacturers’ claims. Based on published frequencies of probe reactions and RRDR mutations, we found specific probe reactions with high potential use in transmission studies: Xpert MTB/RIF probes A, Bdelayed, C, and Edelayed; Genotype MTBDRplus v2.0 WT2, WT5, and WT6; and Genoscholar NTM + MDRTB II S1 and S3. Inspection of probe reactions of disputed mutations may potentially resolve discordance between genotypic and phenotypic test results. Conclusions: We propose a novel approach for potential real-time detection of RR-TB transmission through fully using digitally linked TB diagnostics and shared repository of test results. To our knowledge, this is the first pragmatic and scalable work in response to the consensus of world-renowned TB experts in 2016 on the potential of diagnostic connectivity to accelerate efforts to eliminate TB. This is evidenced by the ability of our proposed approach to facilitate comparison of probe reactions between different RDTs used in the same setting. Integrating this proposed approach as a plug-in module to a connectivity platform will increase usefulness of connected TB diagnostics for RR-TB outbreak detection through real-time investigation of suspected RR-TB transmission cases based on epidemiologic linking.KCN was supported by Erasmus Mundus Joint Doctorate Fellowship grant 2016-1346, and BCdJ, LR, and CJM were supported by European Research Council-INTERRUPTB starting grant 311725

    Compensatory guaiacyl lignin biosynthesis at the expense of syringyl lignin in 4CL1-knockout poplar

    Get PDF
    The lignin biosynthetic pathway is highly conserved in angiosperms, yet pathway manipulations give rise to a variety of taxon-specific outcomes. Knockout of lignin-associated 4-coumarate:CoA ligases (4CLs) in herbaceous species mainly reduces guaiacyl (G) lignin and enhances cell wall saccharification. Here we show that CRISPR-knockout of 4CL1 in poplar (Populus tremula x alba) preferentially reduced syringyl (S) lignin, with negligible effects on biomass recalcitrance. Concordant with reduced S-lignin was downregulation of ferulate 5-hydroxylases (F5Hs). Lignification was largely sustained by 4CL5, a low-affinity paralog of 4CL1 typically with only minor xylem expression or activity. Levels of caffeate, the preferred substrate of 4CL5, increased in line with significant upregulation of caffeoyl shikimate esterase1. Upregulation of caffeoyl-CoA O-methyltransferase1 and downregulation of F5Hs are consistent with preferential funneling of 4CL5 products toward G-lignin biosynthesis at the expense of S-lignin. Thus, transcriptional and metabolic adaptations to 4CL1-knockout appear to have enabled 4CL5 catalysis at a level sufficient to sustain lignification. Finally, genes involved in sulfur assimilation, the glutathione-ascorbate cycle, and various antioxidant systems were upregulated in the mutants, suggesting cascading responses to perturbed thioesterification in lignin biosynthesis

    COX7A2L genetic variants determine cardiorespiratory fitness in mice and human

    Get PDF
    Benegiamo et al. identify genetic variants of the mitochondrial supercomplex assembly factor COX7A2L in the skeletal muscle of mice and humans that promote cardiorespiratory fitness.Mitochondrial respiratory complexes form superassembled structures called supercomplexes. COX7A2L is a supercomplex-specific assembly factor in mammals, although its implication for supercomplex formation and cellular metabolism remains controversial. Here we identify a role for COX7A2L for mitochondrial supercomplex formation in humans. By using human cis-expression quantitative trait loci data, we highlight genetic variants in the COX7A2L gene that affect its skeletal muscle expression specifically. The most significant cis-expression quantitative trait locus is a 10-bp insertion in the COX7A2L 3 ' untranslated region that increases messenger RNA stability and expression. Human myotubes harboring this insertion have more supercomplexes and increased respiration. Notably, increased COX7A2L expression in the muscle is associated with lower body fat and improved cardiorespiratory fitness in humans. Accordingly, specific reconstitution of Cox7a2l expression in C57BL/6J mice leads to higher maximal oxygen consumption, increased lean mass and increased energy expenditure. Furthermore, Cox7a2l expression in mice is induced specifically in the muscle upon exercise. These findings elucidate the genetic basis of mitochondrial supercomplex formation and function in humans and show that COX7A2L plays an important role in cardiorespiratory fitness, which could have broad therapeutic implications in reducing cardiovascular mortality.Peer reviewe

    Multidimensional severity assessment in bronchiectasis:An analysis of 7 European cohorts.

    Get PDF
    INTRODUCTION: Bronchiectasis is a multidimensional disease associated with substantial morbidity and mortality. Two disease-specific clinical prediction tools have been developed, the Bronchiectasis Severity Index (BSI) and the FACED score, both of which stratify patients into severity risk categories to predict the probability of mortality. METHODS: We aimed to compare the predictive utility of BSI and FACED in assessing clinically relevant disease outcomes across seven European cohorts independent of their original validation studies. RESULTS: The combined cohorts totalled 1612. Pooled analysis showed that both scores had a good discriminatory predictive value for mortality (pooled area under the curve (AUC) 0.76, 95% CI 0.74 to 0.78 for both scores) with the BSI demonstrating a higher sensitivity (65% vs 28%) but lower specificity (70% vs 93%) compared with the FACED score. Calibration analysis suggested that the BSI performed consistently well across all cohorts, while FACED consistently overestimated mortality in 'severe' patients (pooled OR 0.33 (0.23 to 0.48), p<0.0001). The BSI accurately predicted hospitalisations (pooled AUC 0.82, 95% CI 0.78 to 0.84), exacerbations, quality of life (QoL) and respiratory symptoms across all risk categories. FACED had poor discrimination for hospital admissions (pooled AUC 0.65, 95% CI 0.63 to 0.67) with low sensitivity at 16% and did not consistently predict future risk of exacerbations, QoL or respiratory symptoms. No association was observed with FACED and 6 min walk distance (6MWD) or lung function decline. CONCLUSION: The BSI accurately predicts mortality, hospital admissions, exacerbations, QoL, respiratory symptoms, 6MWD and lung function decline in bronchiectasis, providing a clinically relevant evaluation of disease severity

    The BRICS (Bronchiectasis Radiologically Indexed CT Score)- a multi-center study score for use in idiopathic and post infective bronchiectasis

    Get PDF
    OBJECTIVES: The goal of this study was to develop a simplified radiological score that could assess clinical disease severity in bronchiectasis. METHODS: The Bronchiectasis Radiologically Indexed CT Score (BRICS) was devised based on a multivariable analysis of the Bhalla score and its ability in predicting clinical parameters of severity. The score was then externally validated in six centers in 302 patients. RESULTS: A total of 184 high-resolution CT scans were scored for the validation cohort. In a multiple logistic regression model, disease severity markers significantly associated with the Bhalla score were percent predicted FEV1, sputum purulence, and exacerbations requiring hospital admission. Components of the Bhalla score that were significantly associated with the disease severity markers were bronchial dilatation and number of bronchopulmonary segments with emphysema. The BRICS was developed with these two parameters. The receiver operating-characteristic curve values for BRICS in the derivation cohort were 0.79 for percent predicted FEV1, 0.71 for sputum purulence, and 0.75 for hospital admissions per year; these values were 0.81, 0.70, and 0.70, respectively, in the validation cohort. Sputum free neutrophil elastase activity was significantly elevated in the group with emphysema on CT imaging. CONCLUSIONS: A simplified CT scoring system can be used as an adjunct to clinical parameters to predict disease severity in patients with idiopathic and postinfective bronchiectasis
    corecore