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Abstract. Software development projects are notoriously complex and difficult
to deal with. Several support tools such as issue tracking, code review and Source
Control Management (SCM) systems have been introduced in the past decades to
ease development activities. While such tools efficiently track the evolution of a
given aspect of the project (e.g., bug reports), they provide just a partial view of
the project and often lack of advanced querying mechanisms limiting themselves
to command line or simple GUI support. This is particularly true for projects that
rely on Git, the most popular SCM system today.
In this paper, we propose a conceptual schema for Git and an approach that, given
a Git repository, exports its data to a relational database in order to (1) promote
data integration with other existing SCM tools and (2) enable writing queries on
Git data using standard SQL syntax. To ensure efficiency, our approach comes
with an incremental propagation mechanism that refreshes the database content
with the latest modifications. We have implemented our approach in Gitana, an
open-source tool available on GitHub.
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1 Introduction

Software development projects are inherently complex due to the extensive collabora-
tion and creative thinking involved [1]. In the last years, several tools have been created
to cope with such complexity by providing specific support for the different develop-
ment activities. Probably the most relevant are: Source Control Management (SCM)
systems to manage code repositories [2] [3], storing and tracking the different source
code versions; issue tracker systems [4] to provide support on maintenance and evo-
lution activities such as reporting bugs and requesting new features; and code review
tools to increase the quality of the final software product [5] by recording the commu-
nications between reviewers and code authors. While these tools efficiently track the
evolution of a specific aspect of the software project, each provides just a partial view
of it and usually comes with insufficient means (e.g., only command line support or
other simple user interfaces) to perform any non-trivial query operation that could shed
some light on important aspects of the project status.

This is particularly true for Git [6], that has become the most popular SCM system
thanks to superior off-line capabilities, easier branch management and its promotion



by most well-known Open Source Software (OSS) forges (e.g., GitHub and BitBucket)
[7]. Despite the existence of several project management and monitoring tools built on
top of Git, there is still a major lack of data integration efforts between them and they
all fall short regarding the possibilities they offer for advanced query functionalities,
thus forcing practitioners to resort to learning and using several off-the-shelf tools (e.g.,
[8], [9]), based on predefined queries on individual aspects of the project.

To overcome this situation, in this paper we propose a conceptual schema for Git and
an approach that, given a Git repository, exports its data to a relational database derived
from our conceptual schema. After the initial creation of the database, an incremental
update mechanism will synchronize the database with the repository at any moment by
considering only the modifications in the repository that took place after the last update.

Once in our database, we can easily integrate it with data coming from other tools
that rely on a database infrastructure (e.g., GHTorrent [10], a scalable and offline mirror
of GitHub; and Gerrie [11], a data and information crawler for the code review tool
Gerrit). Thus, we are able to offer a shared place to perform cross-cutting analysis of
a software development project including for instance the collaboration information
(e.g., issues and pull requests) together with the Git (e.g., patches, file renamed) and
code review data (e.g., review comments).

Furthermore, our proposed relational database can be exploited using the standard
SQL language (and any other database analytical processing tool), thus enabling any
practitioner familiar with the SQL language to easily inspect Git repositories according
to her specific needs. For this same purpose, we have also predefined several views
and stored procedures to simplify the computation of useful metrics and simulation of
typical Git commands.

We have implemented our approach in Gitana, an open-source tool available on
GitHub [12].

The remainder of the paper is organized as follows. Section 2 presents the motiva-
tion and the state of the art. Section 3 describes our approach while Section 4 discusses
the application scenarios. Section 5 reports on the implementation details and evaluation
conducted on five projects in GitHub. Finally, Section 6 ends the paper with conclusion
and future work.

2 Motivation and State of the Art

Git repositories are typically explored via the Git command line. However, this ap-
proach is a complex and tedious task which requires developers to have a deep knowl-
edge of Git and shell commands. Moreover, the integration of the queried information
with other tools is very limited.

As an example, performing a query to obtain the number of deleted files in a Git
repository requires to complement the Git command with shell commands to present
the result in a comprehensible way. Listing 1.1 shows a possible way to perform this
query. As can be seen, the Git command involves a few advanced parameters and the
output must be digested with additional shell commands to filter (i.e., grep command)
and present the desired information (i.e., wc command to count).



Listing 1.1. Number of deleted files via command line.
git log --diff-filter=D

--summary
| grep ’delete mode’
| wc -l

Listing 1.2. Number of modifications on a file (named FileName) per user via command line.
git log --full-history

--format=tformat:%a FileName
| gawk
’{ count[$1]++ } END
{ for(j in count) printf "%s: %s changes\n",

j, count[j]}’

When the aim is to perform a more detailed analysis (e.g., where grouping or
pattern-matching is required), the definition of queries with the command line can
quickly become an almost impossible task for non-experts. For instance, Listing 1.2
shows a query to obtain the number of modifications on a file per user. As can be seen,
the query requires using the Git command option log together with some advanced pa-
rameters and other shell commands (see the use of gawk command) to digest, analyze
and present the data.

This situation has not been solved by the proliferation of Git-based tools we have
witnessed in the last years. This affects not only the day-to-day operations on Git-based
projects but also any attempt to analyze Git to unveil interesting facts on the develop-
ment process, team dynamics, etc., that could be useful to optimize the management
and evolution of the project. Or, given the tight relationship between Git and code host-
ing platforms for open source projects, any effort aimed at mining Git repositories to
extract common patterns for OSS development.

Previous works focused on extracting information from SCM systems to perform
specific analysis (e.g., bug prediction, logical coupling detection, etc.), in particular
most of them ([13], [14], [15], [16], [17], [18], [19]) target older SCM systems such
as CVS and SVN, while only few focus on Git ([7], [20], [8], [9], [21]). More recent
works have the goal of analyzing complete OSS forges such as GitHub or SourceForge
([10], [22]). Our approach belongs to the first axis (i.e., it’s not linked to a specific code
hosting platform) and tries to overcome different limitations of previous works. Such
limitations are presented and compared with our proposal below (see Tab. 1).

– Generality. All previous works target very specific information goals, thus they ex-
tract and store only a portion of the SCM data. This partial view of the information
makes very difficult to extend and integrate these tools with others targeting a differ-
ent perspective. Instead, we propose a database which stores all SCM information
(coarse and fine-grained).

– Flexibility. Many previous works such as [8], [9] and [19] do not allow ad-hoc
queries, and Git itself makes it possible by only mixing Git commands together
with shell scripting, as shown before. On the other hand, the works in [13], [15],
[17], [18] and [16] allow the definition of ad-hoc queries limited to the portion of



[13] [18] [15] [16]
[14] [20]

[7]
[17] [9]

[21] [8]
[19]

Gitana Git

Generality x x
Flexibility x
Incrementality x x
Exportability x x x x
Extensibility x x x x x
Availability x x x x x x

Table 1. Comparison with previous works.

the SCM information they store. Our approach aims at performing better since it
mirrors all information in the Git SCM and stores it in a RDB, thus it is flexible and
complete enough to satisfy all user’s needs for querying purposes.

– Incrementality. None of the previous works provides an incremental propagation
mechanism to align the database content with the SCM’s latest modifications. Thus,
they have to be executed each time the repository changes, which hampers scala-
bility when dealing with large repositories. Our approach includes an incremental
propagation mechanism that makes it suitable for both small and large repositories.

– Exportability. Works by [17] and [16] provide an exporter from the data stored
in the database to XML, however the XML structure and level of detail is un-
clear (e.g., it is not said whether the XML format is a mere representation of each
database table). On the other hand, the approach presented in [9] does not rely on
a database, but presents the data extracted from the SCM in HTML, XML and
plain-text format. Currently, Gitana provides a JSON exporter that restructures the
database information to make it available in other technologies beyond SQL.

– Extensibility. Previous works such as [13], [15], [17], [18] and [16] rely on a database
that should be modified to add new sources of information, however they do not
discuss any extension mechanism. On the contrary, our approach discusses possi-
ble integrations with other sources of information such as bug tracking systems and
code review tools, as we show in this paper. Such integration can be easily achieved
by connecting the concepts of Developer, Commit or File embedded in our model
to their equivalent in other sources.

– Availability. Only [19], [15], [16], [8], [9] and [21] make their implementations
available to download. However only [21] and [15] have been active in the past
years. Gitana has been made available on GitHub at [12].

In short, to the best of our knowledge no previous tool or research effort has pro-
posed a conceptual schema for Git with the intent of (1) promoting data integration with
other Git-based tools and (2) enabling advanced query functionalities for Git.

3 Our Approach

We propose a conceptual schema for Git to facilitate data integration between exist-
ing Git-based tools and advanced query operations. This schema is materialized as a
relational database, for which we have defined an extraction process that populates
and keeps it up-to-date. Next we describe the conceptual schema, the corresponding
database schema and the extraction process.
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name : String
inRemote : Boolean

FileModification

status : String
additions : int
deletions : int
changes : int
patch : String
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name : String
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/ commitsPerMonth : Int
/ filesDeleted : Int

/ LineDetail

type : String
lineNumber : Int
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/ filesDeleted : Int
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Fig. 1. Git conceptual schema.

3.1 Modeling Git

Git is a decentralized SCM system based on a master-less peer-to-peer replication where
any replica of a given project can send or receive any information to or from any other
replica. In Git, any developer can either create from scratch her own Git repository
or obtain a copy (i.e., clone) of an existing one (i.e., remote). Although Git can the-
oretically work without a centralized repository, in practice there is usually a central
repository that serves as the authoritative copy of the software project, thus it is what
everyone fetches from and pushes to.

The structure of a Git repository is shown in the conceptual schema of Fig.1. A non-
empty repository is organized following a tree structure where each node is represented
by a commit to which references can be assigned. A commit is uniquely identified (i.e.,
using SHA) and contains a revision of the files within the repository reflecting the state
of the project at a given point in time (i.e., snapshot).

In particular, a commit stores the differences between the files (Files and FileMod-
ifications) that changed between two revisions (the patch attribute in FileModification
stores this raw information). It also contains information (i.e., name and email) regard-
ing the corresponding author and committer (Developer), where the former is the one
that did the change and the latter is the one that applied the change to the repository.
Furthermore, a commit includes a reference to its parent commit(s) (parent). Generally,
a commit has only one parent, that represents the previous state of the project; however,
it can be parent-less (e.g., the commit originates the repository) or have multiple parents
(when merging two or more branches).

Commits can be linked to different references, such as branches and tags. A branch
represents a line of development that can be local if exists only in the cloned repository
or remote if belongs to the remote repository (inRemote). The default branch is usually
named master but new ones can be created to start new separated lines of development
(e.g., to work on a new feature or to fix a bug). A branch can be also be merged with
another one (e.g., to make a new release or when fixing a bug). A tag is a reference that
can also be assigned to commits and it is generally used as marker for relevant events
in the repository (e.g., releases, milestones).



view_n

developer_activity_weekly

developer_activity

num_files_present

num_branches

avg_modified_file_by_commit

num_empty_lines

num_commented_lines

INT(20)

INT(20)

INT(20)

FLOAT(10, 4)

INT(1)

INT(1)

repo_statistics

num_files_deleted

Views

get_file_history

Parameters
IN

Returns

TEXT

_file_id INT

FUNCTION

get_file_version

Parameters
IN _file_id INT

STORED PROCEDURE

IN _date TEXT

IN by_line BOOL

get_file_version_by_line

Parameters
IN _file_ids TEXT

STORED PROCEDURE

IN _date TEXT

get_file_version_compact

Parameters
IN _file_ids TEXT

STORED PROCEDURE

IN _date TEXT

Functions & Stored Procedures

current_file_id

file_renamed

FK(file.id)

previous_file_id

INT(20)

INT(20) FK(file.id)

id

developer

name

email

INT(20)

VARCHAR(256)

VARCHAR(255)

Constraints

UNIQUE(name, email)

id

repository

name

INT(20)

VARCHAR(255)

id

reference

repo_id

name

FK(repository.id)

INT(20)

INT(20)

VARCHAR(255)

Constraints

UNIQUE(name)

type VARCHAR(255)

commit_id INT(20) FK(commit.id)

commit_in_reference

ref_id INT(20) FK(reference.id)

commit_parent

commit_sha

parent_sha

parent_id FK(commit.id)INT(20)

commit_id FK(commit.id)INT(20)

VARCHAR(255)

VARCHAR(255)

Constraints

UNIQUE(repo_id, commit_id, parent_sha)

id

file_modification

status

additions

deletions

changes

patch

INT(20)

file_id FK(file.id)INT(20)

VARCHAR(20)

INT(20)

INT(20)

INT(20)

LONGBLOB

commit_id INT(20) FK(commit.id)

file_modification_id

line_detail

type

line_number

is_commented

is_partially_commented

is_empty

FK(file_modification.id)INT(20)

VARCHAR(25)

INT(20)

INT(1)

INT(1)

INT(1)

content LONGBLOB

Tables

id

commit

sha

message

size

author_id

committer_id

authored_date

committed_date

FK(developer.id)

FK(developer.id)

INT(20)

VARCHAR(512)

VARCHAR(512)

INT(11)

INT(20)

INT(20)

TIMESTAMP

TIMESTAMP

Constraints

UNIQUE(sha)

repo_id FK(repository.id)INT(20)

id

file

name

INT(20)

ref_id FK(reference.id)INT(20)

VARCHAR(255)

Constraints

UNIQUE(repo_id, ref_id, name)

ext VARCHAR(255)

repo_id FK(repository.id)INT(20)

soundex_match

Parameters
IN

Returns

INT(1)

str_1 VARCHAR(255)

FUNCTION

IN str_2 VARCHAR(255)

levenshtein_distance

Parameters
IN

Returns

INT(255)

str_1 VARCHAR(255)

FUNCTION

IN str_2 VARCHAR(255)

Constraints

UNIQUE(name)
in_remote TINYINT(1)

Fig. 2. Database Schema for Git.

The conceptual schema also includes some derived concepts and methods to fa-
cilitate the analysis of Git repositories by making explicit some information that is
normally hidden or hard to query. This is the case for LineDetail and FileRename con-
cepts, and the getVersion method of the File concept. LineDetail represents precise
information regarding each line of a file modification, which includes the line number,
its content and whether the line is (partially) commented or not. FileRename represents
file rename actions occurred during the life-cycle of a software project, thus allowing
tracking the whole life of a file in a repository. Finally, the getVersion method allows
obtaining the version of a file at a particular timestamp.

Additionally, concepts in the schema can be enriched with some calculated metrics,
expressed as derived attributes, to analyze the repository. As an example, we have added
to the schema some derived attributes like filesDeleted and emptyLines providing some
activity metrics of the repository.

3.2 A Database Schema for Git

The previous conceptual schema is materialized in the relational database schema of
Fig. 2. In a nutshell, concepts/attributes in the conceptual schema are mapped into ta-
bles/columns in the database schema and associations are mapped into foreign keys
(e.g., author association in Commit concept and author id foreign key in commit table)
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Fig. 3. Import process.

or new tables (e.g., commit parent) depending on the cardinality of the association, fol-
lowing the typical translation strategies. Note that the Branch-Tag taxonomy has been
mapped to a new attribute type in the table reference.

Additionally, several views have been created in the database to calculate the de-
rived attributes in the conceptual schema (e.g., repo statistics or developer activity
views). Auxiliary methods have been implemented as either functions or store proce-
dures (see get file version). Full description of these views and methods can be found
in the GitHub repository hosting the tool [12].

3.3 Extraction Process

We have defined an extraction process which interacts with a given Git repository in
order to populate a database conforming to the schema previously described. The op-
erations implemented by our approach support both the initial data loading from the
SCM system to the database and later incrementally updating it with the latest SCM
information. In the remainder of this section both operations are presented.

Initial Import Process An overview of the process to populate the database is shown
in Fig. 3. It is composed of five steps, that respectively analyze and extract information
concerning the repository, the references, the commits, the files and the file lines.

The first step, the repository analysis, adds to the table repository the name of the
repository being analyzed. In the reference analysis step, branch and tag names are
retrieved and used to fill the reference table together with the repository identifier.

In the commit analysis step, for each reference, all the corresponding commits, in-
cluding common ancestors, are retrieved in chronological order (optionally, they can
also be filtered by date if we don’t want to import the full project history). For each
commit, the names and emails of author and committer are stored in the table devel-
oper, then the corresponding author and developer identifiers are inserted together with
the repository identifier and the commit information (e.g., SHA, message, etc.) in the
table commit. Table commit in reference is used to relate commits with references, thus
simplifying the retrieval of all commits in a given reference and the identification of
commits shared between different references, while the table commit parent is used to
relate commits among each other, storing the relation between a commit and its corre-
sponding parent(s).

In the file analysis step, for each commit, the differences (patch) between the previ-
ous and current versions of the files modified by the commit are retrieved. A patch can
concern modifications (i.e., addition, deletion, changes) or renamings (i.e., changing its
name or location) of a file. For each file involved in a patch, its name (including its path)
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Fig. 4. Update process.

and extension as well as the identifiers of the repository and reference the file belongs
to are stored in the table file. The identifier of the file is used to relate the file with its
corresponding modifications and/or to its renamings. In particular, each modification
on a file is stored in the table file modification. It contains the identifiers of the related
file and commit, the current status of the file at the time of that modification, the content
of the patch and the number of additions, deletions and changes. On the other hand, if
a file has been renamed, the previous and current identifiers of the files are stored in the
table file renamed.

Table line detail is populated during the line analysis step. Such a step is in charge
of analyzing and extracting the information concerning the individual file lines by using
regular expressions on top of the patch information. In particular, the line number, the
content of the line and the type of modification (i.e., addition, deletion) are retrieved
together with information concerning whether the line is empty, commented or partially
commented. The identification of comments is currently able to deal with line and block
comments for the following languages: Python, Java, HTML, XML, SQL, JavaScript,
C, C++, Scala, PHP, Ruby and Matlab.

Incremental Update Process The update process, shown in Fig. 4, keeps the informa-
tion in the SCM system aligned with the one contained in the database. It is composed
of three steps that connect the database with the Git repository plus a final extraction
process to integrate the data not yet in the database.

The first step, repository selection, consists of selecting the name of a repository to
update and retrieving the corresponding identifier stored in the table repository. In the
commit recovery step, the repository identifier is used to collect the last SHA commit for
each reference stored in the database by joining the information contained in the tables
repository, commit, commit in reference and reference. Once the pairs {reference name,
last SHA commit} are obtained, the commit selection step uses them to gather from
the Git repository the set of new commits to be added to the database. Optionally, the
retrieved commits can be filtered by retaining only those ones created before a certain
date. In addition, the Git repository is queried also to collect those references that have
no correspondence in the database.

Finally, some steps of the import process, previously presented, are reused to persist
the new elements in the database, in particular, the reference analysis is started for each
new reference found in the Git repository but not in the database, optionally together
with a before date; while the commit analysis is launched for each set of new commits
per reference.



Currently the materialized views in the database are recalculated each time the up-
date process is triggered. Although this solution works properly with small and medium
sized repositories, it may be inefficient for large repositories. In this sense, previous re-
search efforts on incremental maintenance of materialized views (e.g., [23], [24], [25])
can be used to improve the efficiency of the update process.

4 Application Scenarios

In this section we present some application scenarios for the integration and advanced
query functionalities provided by Gitana.

4.1 Integration

The schema presented in Fig. 2 can be integrated with other development-related data
coming from tools that rely on a database infrastructure. Examples of such tools are
most of issue tracking systems (e.g., BugZilla, Trac, Mantis) plus tools like GHTor-
rent [10], a scalable and offline mirror of GitHub; Gerrie [11], a data and information
crawler for Gerrit, and Bicho [26], a tool that is able to parse different issue tracking
systems (e.g., Launchpad, Jira, Allura).

Any of such tools embeds at least one concept that deals with Commits, Files or
Developers. By leveraging on such concepts we can connect their database schemas
with our Git schema. While the integration for files and commits is straightforward,
since it involves a perfect match between file names and SHA identifiers; the inte-
gration for developers can only be semi-automatic and require the use of well-known
identity matching/entity resolution algorithms (e.g., [27], [28]), as the developer can
use different credentials (e.g., login or email) in the different tools she participates to.

As example, we illustrate how our approach can be integrated with GHTorrent and
Gerrie. Figure 5 shows an excerpt of the main tables involved in the integration4. As
can be seen, the concepts of Developer, File and Commit defined in our Git schema are
similarly used in GHTorrent (tables Users and Commits) and Gerrie (tables Gerrie file,
Gerrie person).

Integrating with GHTorrent provides a broader view of a GitHub project by combin-
ing the collaboration data and the Git SCM data, which GHTorrent does not cover at the
moment. Thus, it opens up the possibility of writing queries that rely on both collabora-
tion and code information (e.g., the most conflictive file lines according to the number
of pull requests modifying them). Gerrie integration allows extending the analysis of
code-reviews with fine-grained information from the Git SCM data (e.g., most influen-
tial developers in terms of changes in the files for a particular branch). Note that it is
also possible to integrate the three tools, where Gitana may act as pivot representation.
This scenario would provide a general view of the collaboration in the development pro-
cess, for instance, to analyze the most conflictive pull requests (information provided
by GHTorrent) in terms of code reviews (information provided by Gerrie).

4 GHTorrent and Gerrie schemas are available at: http://ghtorrent.org/files/schema.png and
http://gerrie.readthedocs.org/en/latest/database/#schema, respectively
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commits
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file
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ref_id FK(reference.id)INT(20)

VARCHAR(255)

VARCHAR(255)

gerrie_person

id
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GERRIT through GERRIE

Fig. 5. GHTorrent and Gitana database schema excerpts and the main joining columns.

Listing 1.3. Number of deleted files via SQL.
SELECT
COUNT(DISTINCT fm.file_id)

FROM
file_modification fm

WHERE
status = ’deleted’;

In these examples, mappings are mostly one-to-one but it could happen that con-
cepts are expressed with a different structure in the tools to be combined. In that case,
previous findings on structural conflict resolution in the integration of Entity-Relationship
schemas (i.e., [29], [30], [31]) should be used to deal with such schematic discrepancies.

4.2 Advanced Query Functionalities

Given the database representation of the SCM system, we can leverage on the plethora
of tools and techniques existing in the database realm to perform advanced queries on
the data. In this section we illustrate the advantages of this approach when compared to
the traditional command line support.

For this, we show how we can easily rewrite the examples from Sect. 2 in SQL.
Listings 1.3 and 1.4 show the SQL queries required to calculate the number of deleted
files and the main modifications (i.e., additions, deletions and total) made by each de-
veloper in the repository, respectively (as done in Listings 1.1 and 1.2). As can be seen,
instead of using a combination of command line and shell commands, with Gitana, pure
SQL syntax suffices to get the information.

Additionally, our approach also includes some calculated information not directly
available when using the Git command line. This can help developers to uncover valu-
able information from the repository. For instance, the derived concept LineDetail and
its corresponding database table line detail may help to discover who are the developers
that comment the most the source code. Listing 1.5 shows a SQL query which calcu-
lates the number of files including comments per developer. In order to do so without



Listing 1.4. Number of modifications on a file (named FileName) per user via SQL.
SELECT
d.name,
count(distinct c.id) AS changes

FROM
file f, file_modification fm,
commit c, developer d

WHERE
f.name = "FileName" AND f.id = fm.file_id AND
fm.commit_id = c.id AND c.author_id = d.id AND
f.ref_id = 1 /* a branch id */

GROUP BY
d.id;

Listing 1.5. Number of files commented per developers via SQL.
SELECT
d.name AS developer,
count(distinct(fm.file_id)) as num_files

FROM
line_detail ld, file_modification fm,
commit c, developer d

WHERE
ld.file_modification_id = fm.id AND
fm.commit_id = c.id AND c.author_id = d.id AND
(ld.is_commented = 1 OR
ld.is_partially_commented = 1)

GROUP BY
d.name;

Gitana, developers would need to come up themselves with the regular expressions to
analyze the code.

Beyond pure SQL queries, we can also apply on our Git schema any existing ETL
(Extract, Transform and Load) and OLAP (On-line Analytical Processing) technologies
to perform multidimensional analysis for Git. Such a multidimensional analysis model
can be personalized [32] to provide users with appropriate structures allowing them to
intuitively analyze and understand the SCM information by reporting on current data,
looking at historical data and trying to make predictions about future trends. Examples
of possible analysis could be the evolution of the number of commits and files per unit
of time (e.g., week, month, quarter) as well as the contribution activity of the developers
in the project over time.

5 Tool support and Evaluation

Our method has been implemented in a tool called Gitana, available at [12]. Gitana
relies on different technologies. The database import process has been implemented
in Python 2.7.6 and rely on version 0.3.1 of GitPython5, a library to interact with Git
repositories. The generated database is by default stored in a MySQL server. The tool
is launched via a simple GUI interface shown in Fig. 6.

5 https://pypi.python.org/pypi/GitPython



Fig. 6. Gitana GUI interface.

owner-repo branches tags # commits in refs extraction time
atlanmod-EMFtoCSP 1 - 67 5m37s

atlanmod-gila 2 - 289 8m47s

atlanmod-collaboro 3 3 1083 2h2m33s

octopress-octopress 1 38 5215 5h25m8s

reddit-reddit 2 - 10680 9h39m29s

Table 2. Evaluation on 5 open-source projects.

A JSON export component is also available. The JSON export process is composed
of four steps: (1) repository selection; (2) file selection, which collects/ignores the files
in the repository fulfilling some conditions (e.g., file extensions, inclusion in specific
directories); (3) developer aggregation, which allows to merge together different user
names corresponding to the same physical person or developers part of the same devel-
opment sub-team and (4) file export, which collects the information for each file and
generates the JSON data. The resulting JSON document follows a tree-based represen-
tation of the database where each entry is composed of the overall information (e.g.,
extension, current status and last modification) of a file, the commits that modified it,
the list of changes at file level with the corresponding patches and the list of changes
at line level. We believe the JSON support can facilitate the analysis of Git repositories
by means of other technologies. For instance we described in [33] a website generator,
relying on Gitana, to display the bus factor6 of Git repositories.

Our extraction process has been evaluated on five open-source projects available on
GitHub. Beyond validating that the extracted information was correct (either manually
or, for some repositories, by discussing it with the project owners), the goal was to
check the efficiency of the process. The results of the evaluation are shown in Tab.
2. We ran the evaluation on a 2.6 GHz Intel Core i7 processor with 8 GB of RAM.
Note that even if the database import process can take some time (e.g., 2 hours for
1,000 commits), this only refers to the initial import. Once this phase is complete, the
incremental mechanism takes over and minimizes the time for future imports.

6 The bus factor of a project is typically defined as the number of key developers who would
need to be incapacitated, i.e., hit by a bus, to make the project unable to continue



6 Conclusion

In this paper we have presented a conceptual schema for Git and how it can be used
to export the data contained in a Git SCM system to a relational database in order to
achieve two goals: (1) facilitate the integration with different tools built on top of Git
and (2) enable advanced queries to inspect the repository, hard to achieve through the
command line interface. Our method supports an incremental update of the Git data and
has been implemented in the Gitana tool, freely available on GitHub at [12].

As further work, we would like to have a deeper integration of all kinds of SCM
tools advancing in our idea of having one single central (database-oriented) shared
access point for all the project information, enabling lots of interesting cross-cutting
queries. Moreover, at the tool level, we would like to speed up the initial import phase
by parallelizing the analysis of branches and tags in the repository. We are also inter-
ested in making more tunable the output of the JSON exporter, as currently the user is
bound to the JSON predefined output structure.
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