316 research outputs found

    Isospin splitting in heavy baryons and mesons

    Full text link
    A recent general analysis of light-baryon isospin splittings is updated and extended to charmed baryons. The measured Σc\Sigma_c and Ξc\Xi_c splittings stand out as being difficult to understand in terms of two-body forces alone. We also discuss heavy-light mesons; though the framework here is necessarily less general, we nevertheless obtain some predictions that are not strongly model-dependent.Comment: 12 pages REVTEX 3, plus 4 uuencoded ps figures, CMU-HEP93-

    Rare charm meson decays D->Pl^+l^- and c->ul^+l^- in SM and MSSM

    Get PDF
    We study the nine possible rare charm meson decays D->Pl^+l^- (P=pi,K,eta,eta') using the Heavy Meson Chiral Lagrangians and find them to be dominated by the long distance contributions. The decay D^+ -> pi^+l^+l^- with the branching ratio 1*10^(-6) is expected to have the best chances for an early experimental discovery. The short distance contribution in the five Cabibbo suppressed channels arises via the c->ul^+l^- transition; we find that this contribution is detectable only in the D->pi l^+l^- decay, where it dominates the differential spectrum at high-q^2. The general Minimal Supersymmetric Standard Model can enhance the c->ul^+l^- rate by up to an order of magnitude; its effect on the D->Pl^+l^- rates is small since the c->ul^+l^- enhancement is sizable in low-q^2 region, which is inhibited in the hadronic decay.Comment: 17 page

    CP Violation in the Semileptonic Bl4B_{l4} (B->D \pi l \nu) Decays: A Model Independent Analysis

    Full text link
    CP violation from physics beyond the Standard Model is investigated in Bl4B_{l4} decays: BDπlνˉlB\to D\pi l\bar{\nu}_l. The semileptonic BB-meson decay to a DD-meson with an emission of single pion is analyzed with heavy quark effective theory and chiral perturbation theory. In the decay process, we include various excited states as intermediate states decaying to the final hadrons, D+πD+\pi. The CP violation is implemented in a model independent way, in which we extend leptonic current by including complex couplings of the scalar sector and those of the vector sector in extensions of the Standard Model. With these complex couplings, we calculate the CP-odd rate asymmetry and the optimal asymmetry. We find that the optimal asymmetry is sizable and can be detected at 1σ1\sigma level with about 10610^6-10710^7 BB-meson pairs, for some reference values of new physics effects.Comment: 25 pages, Latex, 4 figures include

    NN Core Interactions and Differential Cross Sections from One Gluon Exchange

    Full text link
    We derive nonstrange baryon-baryon scattering amplitudes in the nonrelativistic quark model using the ``quark Born diagram" formalism. This approach describes the scattering as a single interaction, here the one-gluon-exchange (OGE) spin-spin term followed by constituent interchange, with external nonrelativistic baryon wavefunctions attached to the scattering diagrams to incorporate higher-twist wavefunction effects. The short-range repulsive core in the NN interaction has previously been attributed to this spin-spin interaction in the literature; we find that these perturbative constituent-interchange diagrams do indeed predict repulsive interactions in all I,S channels of the nucleon-nucleon system, and we compare our results for the equivalent short-range potentials to the core potentials found by other authors using nonperturbative methods. We also apply our perturbative techniques to the NΔ\Delta and ΔΔ\Delta\Delta systems: Some ΔΔ\Delta\Delta channels are found to have attractive core potentials and may accommodate ``molecular" bound states near threshold. Finally we use our Born formalism to calculate the NN differential cross section, which we compare with experimental results for unpolarised proton-proton elastic scattering. We find that several familiar features of the experimental differential cross section are reproduced by our Born-order result.Comment: 27 pages, figures available from the authors, revtex, CEBAF-TH-93-04, MIT-CTP-2187, ORNL-CCIP-93-0

    Eureka and beyond: mining's impact on African urbanisation

    Get PDF
    This collection brings separate literatures on mining and urbanisation together at a time when both artisanal and large-scale mining are expanding in many African economies. While much has been written about contestation over land and mineral rights, the impact of mining on settlement, notably its catalytic and fluctuating effects on migration and urban growth, has been largely ignored. African nation-states’ urbanisation trends have shown considerable variation over the past half century. The current surge in ‘new’ mining countries and the slow-down in ‘old’ mining countries are generating some remarkable settlement patterns and welfare outcomes. Presently, the African continent is a laboratory of national mining experiences. This special issue on African mining and urbanisation encompasses a wide cross-section of country case studies: beginning with the historical experiences of mining in Southern Africa (South Africa, Zambia, Zimbabwe), followed by more recent mineralizing trends in comparatively new mineral-producing countries (Tanzania) and an established West African gold producer (Ghana), before turning to the influence of conflict minerals (Angola, the Democratic Republic of Congo and Sierra Leone)

    Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope

    Full text link
    Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ~200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits exclude large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ~5 over a smooth-halo assumption. We also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. In this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.Comment: accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo, minor revisions to be consistent with accepted versio

    Two photons into \pi^0\pi^0

    Full text link
    We perform a theoretical study based on dispersion relations of the reaction \gamma\gamma\to \pi^0\pi^0 emphasizing the low energy region. We discuss how the f_0(980) signal emerges in \gamma\gamma\to \pi\pi within the dispersive approach and how this fixes to a large extent the phase of the isoscalar S-wave \gamma\gamma\to \pi\pi amplitude above the K\bar{K} threshold. This allows us to make sharper predictions for the cross section at lower energies and our results could then be used to distinguish between different \pi\pi isoscalar S-wave parameterizations with the advent of new precise data on \gamma\gamma\to\pi^0\pi^0. We compare our dispersive approach with an updated calculation employing Unitary Chiral Perturbation Theory (U\chiPT). We also pay special attention to the role played by the \sigma resonance in \gamma\gamma\to\pi\pi and calculate its coupling and width to gamma\gamma, for which we obtain \Gamma(\sigma\to\gamma\gamma)=(1.68\pm 0.15) KeV.Comment: 31 pages, 9 figure

    Signatures of Right-Handed Majorana neutrinos and gauge bosons in eγe \gamma Collisions

    Full text link
    The process eγe+WRWRe^- \gamma \to e^+ W_R^- W_R^- is studied in the framework of the Left-Right symmetric model. It is shown that this reaction and eγl+WRWRe^- \gamma \to l^+ W_R^- W_R^- for the arbitrary final lepton are likely to be discovered for CLIC collider option. For relatively light doubly charged Higgs boson its mass does not have much influence on the discovery potential, while for heavier values the probability of the reaction increases.Comment: 18 pages, 7 figures, LaTe

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
    corecore