302 research outputs found

    Characterization of visual object representations in rat primary visual cortex

    Get PDF
    For most animal species, quick and reliable identification of visual objects is critical for survival. This applies also to rodents, which, in recent years, have become increasingly popular models of visual functions. For this reason in this work we analyzed how various properties of visual objects are represented in rat primary visual cortex (V1). The analysis has been carried out through supervised (classification) and unsupervised (clustering) learning methods. We assessed quantitatively the discrimination capabilities of V1 neurons by demonstrating how photometric properties (luminosity and object position in the scene) can be derived directly from the neuronal responses

    Numerical index and duality

    Full text link
    We present an example of a Banach space whose numerical index is strictly greater than the numerical index of its dual, giving a negative answer to a question which has been latent since the beginning of the seventies. We also show a particular case in which the numerical index of the space and the one of its dual coincide

    Electrophysiological Heterogeneity of Fast-Spiking Interneurons: Chandelier versus Basket Cells

    Get PDF
    In the prefrontal cortex, parvalbumin-positive inhibitory neurons play a prominent role in the neural circuitry that subserves working memory, and alterations in these neurons contribute to the pathophysiology of schizophrenia. Two morphologically distinct classes of parvalbumin neurons that target the perisomatic region of pyramidal neurons, chandelier cells (ChCs) and basket cells (BCs), are generally thought to have the same "fast-spiking" phenotype, which is characterized by a short action potential and high frequency firing without adaptation. However, findings from studies in different species suggest that certain electrophysiological membrane properties might differ between these two cell classes. In this study, we assessed the physiological heterogeneity of fast-spiking interneurons as a function of two factors: species (macaque monkey vs. rat) and morphology (chandelier vs. basket). We showed previously that electrophysiological membrane properties of BCs differ between these two species. Here, for the first time, we report differences in ChCs membrane properties between monkey and rat. We also found that a number of membrane properties differentiate ChCs from BCs. Some of these differences were species-independent (e.g., fast and medium afterhyperpolarization, firing frequency, and depolarizing sag), whereas the differences in the first spike latency between ChCs and BCs were species-specific. Our findings indicate that different combinations of electrophysiological membrane properties distinguish ChCs from BCs in rodents and primates. Such electrophysiological differences between ChCs and BCs likely contribute to their distinctive roles in cortical circuitry in each species. © 2013 Povysheva et al

    Distinct synaptic properties of perisomatic inhibitory cell types and their different modulation by cholinergic receptor activation in the CA3 region of the mouse hippocampus

    Get PDF
    Perisomatic inhibition originates from three types of GABAergic interneurons in cortical structures, including parvalbumin-containing fast-spiking basket cells (FSBCs) and axo-axonic cells (AACs), as well as cholecystokinin-expressing regular-spiking basket cells (RSBCs). These interneurons may have significant impact in various cognitive processes, and are subjects of cholinergic modulation. However, it is largely unknown how cholinergic receptor activation modulates the function of perisomatic inhibitory cells. Therefore, we performed paired recordings from anatomically identified perisomatic interneurons and pyramidal cells in the CA3 region of the mouse hippocampus. We determined the basic properties of unitary inhibitory postsynaptic currents (uIPSCs) and found that they differed among cell types, e.g. GABA released from axon endings of AACs evoked uIPSCs with the largest amplitude and with the longest decay measured at room temperature. RSBCs could also release GABA asynchronously, the magnitude of the release increasing with the discharge frequency of the presynaptic interneuron. Cholinergic receptor activation by carbachol significantly decreased the uIPSC amplitude in all three types of cell pairs, but to different extents. M2-type muscarinic receptors were responsible for the reduction in uIPSC amplitudes in FSBC– and AAC–pyramidal cell pairs, while an antagonist of CB1 cannabinoid receptors recovered the suppression in RSBC–pyramidal cell pairs. In addition, carbachol suppressed or even eliminated the short-term depression of uIPSCs in FSBC– and AAC–pyramidal cell pairs in a frequency-dependent manner. These findings suggest that not only are the basic synaptic properties of perisomatic inhibitory cells distinct, but acetylcholine can differentially control the impact of perisomatic inhibition from different sources

    Different Input and Output Properties Characterize Parvalbumin-Positive Basket and Axo-Axonic Cells in the Hippocampal CA3 Subfield

    Get PDF
    In the hippocampus, parvalbumin-expressing basket (BC) and axo-axonic cells (AAC) show different discharge patterns during distinct network states, but the cellular mechanisms underlying these differences are not well understood. Using whole-cell patch-clamp techniques, we investigated the single-cell properties and excitatory synaptic features of anatomically identified BCs and AACs in the CA3 region of mouse hippocampal slices. The results showed that BCs had lower threshold for action potential (AP) generation and lower input resistance, narrower AP and afterhyperpolarization than AACs. In addition, BCs fired with higher frequencies and with more modest accommodation compared to AACs. The kinetic properties of excitatory postsynaptic currents (EPSC), the rectification of AMPA receptor-mediated currents, the fraction of the NMDA receptor-mediated component in EPSCs, and the EPSC magnitude necessary to evoke an AP were similar in both cell types. However, smaller excitatory postsynaptic potential and lower intensity fiber stimulation in stratum oriens was necessary to drive firing in BCs. Moreover, the rate of spontaneous EPSCs in BCs was higher than in AACs. Neurolucida analysis revealed that the dendrites of BCs in strata radiatum and oriens were longer and more extensively ramified. Since the density of the excitatory synapses was estimated to be comparable in both cell types, we conclude that the more elaborated dendritic arbor of BCs ensures that they receive a larger number of proximal excitatory inputs. Thus, CA3 pyramidal cells more profoundly innervate BCs than AACs, which could explain, at least in part, their distinct spiking behavior under different hippocampal network activities

    Recruitment of inhibition and excitation across mouse visual cortex depends on the hierarchy of interconnecting areas

    Get PDF
    Diverse features of sensory stimuli are selectively processed in distinct brain areas. The relative recruitment of inhibitory and excitatory neurons within an area controls the gain of neurons for appropriate stimulus coding. We examined how such a balance of inhibition and excitation is differentially recruited across multiple levels of a cortical hierarchy by mapping the locations and strengths of synaptic inputs to pyramidal and parvalbumin (PV)-expressing neurons in feedforward and feedback pathways interconnecting primary (V1) and two higher visual areas. While interareal excitation was stronger in PV than in pyramidal neurons in all layer 2/3 pathways, we observed a gradual scaling down of the inhibition/excitation ratio from the most feedforward to the most feedback pathway. Our results indicate that interareal gain control depends on the hierarchical position of the source and the target, the direction of information flow through the network, and the laminar location of target neurons. DOI: http://dx.doi.org/10.7554/eLife.19332.00

    Cannabinoid-mediated short-term plasticity in hippocampus

    Get PDF
    Endocannabinoids modulate both excitatory and inhibitory neurotransmission in hippocampus via activation of pre-synaptic cannabinoid receptors. Here, we present a model for cannabinoid mediated short-term depression of excitation (DSE) based on our recently developed model for the equivalent phenomenon of suppressing inhibition (DSI). Furthermore, we derive a simplified formulation of the calcium-mediated endocannabinoid synthesis that underlies short-term modulation of neurotransmission in hippocampus. The simplified model describes cannabinoid-mediated short-term modulation of both hippocampal inhibition and excitation and is ideally suited for large network studies. Moreover, the implementation of the simplified DSI/DSE model provides predictions on how both phenomena are modulated by the magnitude of the pre-synaptic cell's activity. In addition we demonstrate the role of DSE in shaping the post-synaptic cell's firing behaviour qualitatively and quantitatively in dependence on eCB availability and the pre-synaptic cell's activity. Finally, we explore under which conditions the combination of DSI and DSE can temporarily shift the fine balance between excitation and inhibition. This highlights a mechanism by which eCBs might act in a neuro-protective manner during high neural activity
    corecore