85 research outputs found

    Viewing a Graph in a Virtual Reality Display is Three Times as Good as a 2D Diagram

    Get PDF
    An experiment is reported which tests whether network information is more effectively displayed in a three dimensional space than in a two dimensional space. The experimental task is to trace a path in a network and the experiment is carried out in 2D, in a 3D stereo view, in a 2D view with head coupled perspective, and in a 3D stereo view with head coupled perspective; this last condition creates a localized virtual reality display. The results show that the motion parallax obtained from the head coupling of perspective is more important than stereopsis in revealing structural information. Overall the results show that three times as much information can be perceived in the head coupled stereo view as in the 2D view

    Representing Nodes and Arcs in 3D Networks

    Get PDF
    This paper introduces six graphical principles for 30 network displays. These are justified with examples from GraphVisualizer3D, a system developed by the authors to investigate the problems of 30 visualization of information networks. GraphVisualizer3D enables the exploration of sulface color, surface texture, object shape, arc shape and labeling conventions

    Visualizing Object Oriented Software in Three Dimensions

    Get PDF
    There is increasing evidence that it is possible to perceive and understand increasingly comple x information systems if they are displayed a s graphical objects in a three dimensional space . Object-oriented software provides an interestin g test case - there is a natural mapping fro m software objects to visual objects . In this paper we explore two areas. 1) Information perception : we are running controlled experiments to determine empirically if our initial premise is valid; how much more (or less) can be understoo d in 3D than in 2D? 2) Layout: our strategy is to combine partially automatic layout with manua l layout. This paper presents a brief overview of the project, the software architecture and some preliminary empirical results

    Darwin -— an experimental astronomy mission to search for extrasolar planets

    Get PDF
    As a response to ESA call for mission concepts for its Cosmic Vision 2015–2025 plan, we propose a mission called Darwin. Its primary goal is the study of terrestrial extrasolar planets and the search for life on them. In this paper, we describe different characteristics of the instrument

    High-resolution imaging of the Pyrenees and Massif Central from the data of the PYROPE and IBERARRAY portable array deployments

    Get PDF
    International audienceThe lithospheric structures beneath the Pyrenees, which holds the key to settle long-standing controversies regarding the opening of the Bay of Biscay and the formation of the Pyrenees, are still poorly known. The temporary PYROPE and IBERARRAY experiments have recently filled a strong deficit of seismological stations in this part of western Europe, offering a new and unique opportunity to image crustal and mantle structures with unprecedented resolution. Here we report the results of the first tomographic study of the Pyrenees relying on this rich data set. The important aspects of our tomographic study are the precision of both absolute and relative traveltime measurements obtained by a nonlinear simulated annealing waveform fit and the detailed crustal model that has been constructed to compute accurate crustal corrections. Beneath the Massif Central, the most prominent feature is a widespread slow anomaly that reflects a strong thermal anomaly resulting from the thinning of the lithosphere and upwelling of the asthenosphere. Our tomographic images clearly exclude scenarios involving subduction of oceanic lithosphere beneath the Pyrenees. In contrast, they reveal the segmentation of lithospheric structures, mainly by two major lithospheric faults, the Toulouse fault in the central Pyrenees and the Pamplona fault in the western Pyrenees. These inherited Hercynian faults were reactivated during the Cretaceous rifting of the Aquitaine and Iberian margins and during the Cenozoic Alpine convergence. Therefore, the Pyrenees can be seen as resulting from the tectonic inversion of a segmented continental rift that was buried by subduction beneath the European plate

    High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT)

    Get PDF
    (abridged) A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT - the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope, a detector with a large field of view made of small movable CCDs located around a fixed central CCD, and an interferometric calibration system originating from metrology fibers located at the primary mirror. The proposed mission architecture relies on the use of two satellites operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations (alternative option uses deployable boom). The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits. The remaining time might be allocated to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys.Comment: Accepted for publication in Experimental Astronomy. The full member list of the NEAT proposal and the news about the project are available at http://neat.obs.ujf-grenoble.fr. The final publication is available at http://www.springerlink.co

    Improving Measurement-Based Timing Analysis through Randomisation and Probabilistic Analysis

    Get PDF
    The use of increasingly complex hardware and software platforms in response to the ever rising performance demands of modern real-time systems complicates the verification and validation of their timing behaviour, which form a time-and-effort-intensive step of system qualification or certification. In this paper we relate the current state of practice in measurement-based timing analysis, the predominant choice for industrial developers, to the proceedings of the PROXIMA project in that very field. We recall the difficulties that the shift towards more complex computing platforms causes in that regard. Then we discuss the probabilistic approach proposed by PROXIMA to overcome some of those limitations. We present the main principles behind the PROXIMA approach as well as the changes it requires at hardware or software level underneath the application. We also present the current status of the project against its overall goals, and highlight some of the principal confidence-building results achieved so far
    • …
    corecore