311 research outputs found

    Capital Punishment: A Model for Reform

    Get PDF

    Statement letter regarding Mission Canal Company, Shary land and organization dealings, and Granjeno Development Company

    Get PDF
    A letter issued to Herbert Ellis by Glasscock and McDaniel Lawyers on behalf of John H. Shary. The content of the letter includes discussions of the Mission Canal Company, Shary land and organization dealings, and Granjeno Development Companyhttps://scholarworks.utrgv.edu/johnshary/1090/thumbnail.jp

    Internal Active Thermal Control System (IATCS) Sodium Bicarbonate/Carbonate Buffer in an Open Aqueous Carbon Dioxide System and Corollary Electrochemical/Chemical Reactions Relative to System pH Changes

    Get PDF
    The International Space Station (ISS) Internal Active Thermal Control System (IATCS) experienced a number of chemical changes driven by system absorption of CO2 which altered the coolants pH. The natural effects of the decrease in pH from approximately 9.2 to less than 8.4 had immediate consequences on system corrosion rates and corrosion product interactions with specified coolant constituents. The alkalinity of the system was increased through the development and implementation of a carbonate/bicarbonate buffer that would increase coolant pH to 9.0 10.0 and maintain pH above 9.0 in the presence of ISS cabin concentrations of CO2 up to twenty times higher than ground concentrations. This paper defines how a carbonate/bicarbonate buffer works in an open carbon dioxide system and summarizes the analyses performed on the buffer for safe and effective application in the on-orbit system. The importance of the relationship between the cabin environment and the IATCS is demonstrated as the dominant factor in understanding the system chemistry and pH trends before and after addition of the carbonate/bicarbonate buffer. The paper also documents the corollary electrochemical and chemical reactions the system has experienced and the rationale for remediation of these effects with the addition of the carbonate/bicarbonate buffer

    Characterizing the heterogeneity of triple-negative breast cancers using microdissected normal ductal epithelium and RNA-sequencing

    Get PDF
    Triple-negative breast cancers (TNBCs) are a heterogeneous set of tumors defined by an absence of actionable therapeutic targets (ER, PR, and HER-2). Microdissected normal ductal epithelium from healthy volunteers represents a novel comparator to reveal insights into TNBC heterogeneity and to inform drug development. Using RNA-sequencing data from our institution and The Cancer Genome Atlas (TCGA) we compared the transcriptomes of 94 TNBCs, 20 microdissected normal breast tissues from healthy volunteers from the Susan G. Komen for the Cure Tissue Bank, and 10 histologically normal tissues adjacent to tumor. Pathway analysis comparing TNBCs to optimized normal controls of microdissected normal epithelium versus classic controls composed of adjacent normal tissue revealed distinct molecular signatures. Differential gene expression of TNBC compared with normal comparators demonstrated important findings for TNBC-specific clinical trials testing targeted agents; lack of over-expression for negative studies and over-expression in studies with drug activity. Next, by comparing each individual TNBC to the set of microdissected normals, we demonstrate that TNBC heterogeneity is attributable to transcriptional chaos, is associated with non-silent DNA mutational load, and explains transcriptional heterogeneity in addition to known molecular subtypes. Finally, chaos analysis identified 146 core genes dysregulated in >90 % of TNBCs revealing an over-expressed central network. In conclusion, use of microdissected normal ductal epithelium from healthy volunteers enables an optimized approach for studying TNBC and uncovers biological heterogeneity mediated by transcriptional chaos

    Next-generation transcriptome sequencing of the premenopausal breast epithelium using specimens from a normal human breast tissue bank

    Get PDF
    Introduction Our efforts to prevent and treat breast cancer are significantly impeded by a lack of knowledge of the biology and developmental genetics of the normal mammary gland. In order to provide the specimens that will facilitate such an understanding, The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center (KTB) was established. The KTB is, to our knowledge, the only biorepository in the world prospectively established to collect normal, healthy breast tissue from volunteer donors. As a first initiative toward a molecular understanding of the biology and developmental genetics of the normal mammary gland, the effect of the menstrual cycle and hormonal contraceptives on DNA expression in the normal breast epithelium was examined. Methods Using normal breast tissue from 20 premenopausal donors to KTB, the changes in the mRNA of the normal breast epithelium as a function of phase of the menstrual cycle and hormonal contraception were assayed using next-generation whole transcriptome sequencing (RNA-Seq). Results In total, 255 genes representing 1.4% of all genes were deemed to have statistically significant differential expression between the two phases of the menstrual cycle. The overwhelming majority (221; 87%) of the genes have higher expression during the luteal phase. These data provide important insights into the processes occurring during each phase of the menstrual cycle. There was only a single gene significantly differentially expressed when comparing the epithelium of women using hormonal contraception to those in the luteal phase. Conclusions We have taken advantage of a unique research resource, the KTB, to complete the first-ever next-generation transcriptome sequencing of the epithelial compartment of 20 normal human breast specimens. This work has produced a comprehensive catalog of the differences in the expression of protein-coding genes as a function of the phase of the menstrual cycle. These data constitute the beginning of a reference data set of the normal mammary gland, which can be consulted for comparison with data developed from malignant specimens, or to mine the effects of the hormonal flux that occurs during the menstrual cycle

    Sudden unexpected death in epilepsy genetics: Molecular diagnostics and prevention.

    Get PDF
    Epidemiologic studies clearly document the public health burden of sudden unexpected death in epilepsy (SUDEP). Clinical and experimental studies have uncovered dynamic cardiorespiratory dysfunction, both interictally and at the time of sudden death due to epilepsy. Genetic analyses in humans and in model systems have facilitated our current molecular understanding of SUDEP. Many discoveries have been informed by progress in the field of sudden cardiac death and sudden infant death syndrome. It is becoming apparent that SUDEP genomic complexity parallels that of sudden cardiac death, and that there is a pauci1ty of analytically useful postmortem material. Because many challenges remain, future progress in SUDEP research, molecular diagnostics, and prevention rests in international, collaborative, and transdisciplinary dialogue in human and experimental translational research of sudden death

    Sodium channel gene family: epilepsy mutations, gene interactions and modifier effects

    Full text link
    The human sodium channel family includes seven neuronal channels that are essential for the initiation and propagation of action potentials in the CNS and PNS. In view of their critical role in neuronal firing and their strong sequence conservation during evolution, it is not surprising that mutations in the sodium channel genes are responsible for a growing spectrum of channelopathies. Nearly 700 mutations of the SCN1A gene have been identified in patients with Dravet's syndrome (severe myoclonic epilepsy of infancy), making this the most commonly mutated gene in human epilepsy. A small number of mutations have been found in SCN2A , SCN3A and SCN9A , and studies in the mouse suggest that SCN8A may also contribute to seizure disorders. Interactions between genetic variants of SCN2A and KCNQ2 in the mouse and variants of SCN1A and SCN9A in patients provide models of potential genetic modifier effects in the more common human polygenic epilepsies. New methods for generating induced pluripotent stem cells and neurons from patients will facilitate functional analysis of amino acid substitutions in channel proteins. Whole genome sequencing and exome sequencing in patients with epilepsy will soon make it possible to detect multiple variants and their interactions in the genomes of patients with seizure disorders.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79388/1/jphysiol.2010.188482.pd

    Water oxidation at hematite photoelectrodes: the role of surface states

    Get PDF
    Hematite (α-Fe2O3) constitutes one of the most promising semiconductor materials for the conversion of sunlight into chemical fuels by water splitting. Its inherent drawbacks related to the long penetration depth of light and poor charge carrier conductivity are being progressively overcome by employing nanostructuring strategies and improved catalysts. However, the physical–chemical mechanisms responsible for the photoelectrochemical performance of this material (J(V) response) are still poorly understood. In the present study we prepared thin film hematite electrodes by atomic layer deposition to study the photoelectrochemical properties of this material under water-splitting conditions. We employed impedance spectroscopy to determine the main steps involved in photocurrent production at different conditions of voltage, light intensity, and electrolyte pH. A general physical model is proposed, which includes the existence of a surface state at the semiconductor/liquid interface where holes accumulate. The strong correlation between the charging of this state with the charge transfer resistance and the photocurrent onset provides new evidence of the accumulation of holes in surface states at the semiconductor/electrolyte interface, which are responsible for water oxidation. The charging of this surface state under illumination is also related to the shift of the measured flat-band potential. These findings demonstrate the utility of impedance spectroscopy in investigations of hematite electrodes to provide key parameters of photoelectrodes with a relatively simple measurement

    Alterations in the human lung proteome with lipopolysaccharide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recombinant human activated protein C (rhAPC) is associated with improved survival in high-risk patients with severe sepsis; however, the effects of both lipopolysaccharide (LPS) and rhAPC on the bronchoalveolar lavage fluid (BALF) proteome are unknown.</p> <p>Methods</p> <p>Using differential in gel electrophoresis (DIGE) we identified changes in the BALF proteome from 10 healthy volunteers given intrapulmonary LPS in one lobe and saline in another lobe. Subjects were randomized to pretreatment with saline or rhAPC.</p> <p>Results</p> <p>An average of 255 protein spots were detected in each proteome. We found 31 spots corresponding to 8 proteins that displayed abundance increased or decreased at least 2-fold after LPS. Proteins that decreased after LPS included surfactant protein A, immunoglobulin J chain, fibrinogen-γ, α<sub>1</sub>-antitrypsin, immunoglobulin, and α<sub>2</sub>-HS-glycoprotein. Haptoglobin increased after LPS-treatment. Treatment with rhAPC was associated with a larger relative decrease in immunoglobulin J chain, fibrinogen-γ, α<sub>1</sub>-antitrypsin, and α<sub>2</sub>-HS-glycoprotein.</p> <p>Conclusion</p> <p>Intrapulmonary LPS was associated with specific protein changes suggesting that the lung response to LPS is more than just a loss of integrity in the alveolar epithelial barrier; however, pretreatment with rhAPC resulted in minor changes in relative BALF protein abundance consistent with its lack of affect in ALI and milder forms of sepsis.</p
    • …
    corecore