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Abstract

Triple-negative breast cancers (TNBCSs) are a heterogeneous set of tumors defined by an absence
of actionable therapeutic targets (ER-,PR—,HER2-). Microdissected normal ductal epithelium
from healthy volunteers represents a novel comparator to reveal insights into TNBC heterogeneity
and to inform drug development. Using RNA-sequencing data from our institution and The
Cancer Genome Atlas (TCGA) we compared the transcriptomes of 94 TNBCs, 20 microdissected
normal breast tissues from healthy volunteers from the Susan G. Komen for the Cure Tissue Bank,
and 10 histologically normal tissues adjacent to tumor. Pathway analysis comparing TNBCs to
optimized normal controls of microdissected normal epithelium versus classic controls composed
of adjacent normal tissue revealed distinct molecular signatures. Differential gene expression of
TNBC compared with normal comparators demonstrated important findings for TNBC-specific
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clinical trials testing targeted agents; lack of over-expression for negative studies and over-
expression in studies with drug activity. Next, by comparing each individual TNBC to the set of
microdissected normals, we demonstrate that TNBC heterogeneity is attributable to transcriptional
chaos, is associated with non-silent DNA mutational load, and explains transcriptional
heterogeneity in addition to known molecular subtypes. Finally, chaos analysis identified 146 core
genes dysregulated in >90% of TNBCs revealing an over-expressed central network. In
conclusion, Use of microdissected normal ductal epithelium from healthy volunteers enables an
optimized approach for studying TNBC and uncovers biological heterogeneity mediated by
transcriptional chaos.
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INTRODUCTION

TNBC preferentially affects pre-menopausal women and women of African descent and has
been plagued by the absence of targeted therapies leading to poor survival[1-5]. Because
these tumors do not over-express the estrogen, progesterone, or HER-2 receptors (triple-
negative), these patients do not respond to targeted therapies that are successfully used in
patients who over-express these proteins. A major impediment to therapeutic development
in TNBC is an inadequate understanding of the transcriptional biology of the normal breast
as a comparator. The use of microdissected ductal epithelium from healthy women as the
optimal control is not commonly used secondary to sample availability from healthy
volunteers and laborious sample preparation. Many prior gene expression studies have used
undissected reduction mammoplasty or histologically “non-cancerous” tissue adjacent to the
tumor. Both of these controls are fraught with problems. Specifically hyperplastic breasts
that require surgical reduction may harbour neoplasms or pathological atypia[6-9]. In
addition, these tissues are more likely to contain pertubations in global gene
expression[10,11], changes in epigenetic markers[12], and loss of heterozygosity[13,14].

Recent studies have begun to shed light on the heterogeneity of TNBC using genome-wide
technologies. Work by Lehmann et al. using TNBC gene expression data from publically
available microarrays demonstrated that TNBC can be divided into 6 reproducible subtypes
(plus an unclassified type), with potential therapeutic implications[15]. On the DNA level,
recent reports from Shah et al.[16], and the TCGA[17] using exome sequencing have
reported extensive mutational heterogeneity among TNBCs/Basal-like tumors with very low
frequency mutations in a variety of genes, with common recurrent mutations restricted
primarily to TP53 and the PI3K pathway. In addition, previous studies using copy number
analysis have also demonstrated frequent RB1 loss-of-heterozygosity as well as
Chromosome 5q loss and 8q, 10p,and 12p gains[18-20]. Building on this knowledge of
mutational heterogeneity, we used RNA sequencing (RNA-seq) to analyze TNBCs, donated
microdissected normal breast epithelium and adjacent normal tissues to better understand the
transcriptional heterogeneity of this disease.

METHODS

RNA from 20 normal frozen breast tissues from healthy pre-menopausal volunteers with no
history of disease were procured from the Susan G. Komen for the Cure® Tissue Bank
(KTB) at the U Simon Cancer Center (IUSCC). As ductal epithelium (the presumed origin
of breast cancer) comprises a minority of cells in the normal breast, these tissues were laser
capture microdissected in order to enrich for epithelial RNA. RNA from 10 frozen TNBCs
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was extracted from tissues with high tumor content and did not necessitate microdissection.
Normal and TNBC RNA was sequenced on a Life Technologies SOLID sequencer with
subsequent read mapping to the genome using LifeScope 2.5.1[21]. RNA-seq data from the
normal tissues is available for download from dbGAP (http://www.ncbi.nlm.nih.gov/
projects/gap/cgibin/study.cgi?study_id=phs000644.v1.p1). Data for non-TCGA TNBCs are
pending NCBI GEO submission. Normal and TNBC RNA-seq data from Indiana University
were then merged with RNA-seq data from 84 TNBCs and 10 adjacent normals from the
TCGA downloaded from the UCSC cgHUB database (dbGAP approval #3317:
Transcriptional and Mutational Landscape of Triple-Negative Breast Cancer, P.I. Milan
Radovich). Samples IDs of all samples used in this study are in Supplementary Table 4.
Sequencing data was imported into Partek Genomics Suite for gene expression and
statistical analysis, and IPA 9.0 for network and pathway analyses. Full methods of sample
preparation, sequencing, bioinformatics analysis, gPCR, and IHC are in the Supplemental
Methods. All studies on these samples were approved by the IU Institutional Review Board.

Microdissected normal epithelium is a distinct control compared to adjacent normal tissue

We performed next-generation RNA sequencing on 20 microdissected normal breast tissues
from our Susan G. Komen for Cure® Tissue Bank at the Indiana University Simon Cancer
Center as well as 10 TNBCs and merged the mapped sequencing data with 84 TNBCs and
10 adjacent normal tissues available from the TCGA (Supplementary Figures 1-2,
Supplementary Methods). Unsupervised Principal Components Analysis (PCA) of 14,271
expressed genes demonstrated a significant separation of TNBCs from microdissected
normal tissues and adjacent normal tissues illustrating the vast differences in their
transcriptomic profiles (Figure 1). In order to better delineate the individual genes that
differentiate the tissue types, we compared the expression values between TNBCs,
microdissected normal breast tissues, and adjacent normal tissues. When considering a false
discovery rate (FDR) < 0.05 with a fold change more than £2, we report 3,197 differentially
expressed genes for TNBC vs. microdissected normal tissue; 3,217 genes for TNBC vs.
adjacent normal, and 933 genes for adjacent normal vs. microdissected normal tissue (Figure
2, Supplementary Table 1). To better understand the biological differences between these
tissue types, we employed canonical pathway analysis to compare them. Observing the most
statistically significant pathways, TNBC vs. microdissected normal tissue reveals key
pathways known to be implicated in TNBC biology (BRCA1/DNA damage, immune
system, chromosomal abnormalities)[22], whereas TNBC vs. adjacent normal reveals some
of the same pathways but others that are not as intuitive to TNBC biology but instead
stromal biology (atherosclerosis signalling, hepatic fibrosis). The difference in these tissue
types becomes more evident when we examined pathways with genes specific to each
comparison (that do not overlap on the Venn diagram). TNBC vs. microdissected normal
tissue primarily reveals immune pathways (well known to be implicated in TNBC), with the
vast majority of gene ontology biological functions associated with leukocyte and
lymphocyte biology. Conversely, TNBC vs. adjacent normal tissue reveals a diverse set of
pathways with considerably lower p-values with genes indicative of stroma and with gene
ontology biological functions associated with death, edema, angiogenesis, microtubule
dynamics, and neuronal and organ development. These observations can be attributed to the
fact that the adjacent normals are not microdissected and represent a milleu of various
stromal cells. In a further analysis, we also performed a pathway analysis of those genes that
were differentially expressed between both TNBC vs. microdissected normal and adjacent
normal (Figure 2 Venn diagram overlap of 1,267 genes). This analysis recapitulated
pathways seen in both comparators, but was absent of immune pathways, thus excluding
potentially important microenvironmental cues observed in the TNBC vs. microdissected
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normal comparison. Overall, this data suggests that both types of normal controls discover
key genes, but that using microdissected normal tissue provides increased accuracy of
understanding gene dysregulation in TNBC, and thus is used as the standard control for the
rest of our analyses.

To further support the use of microdissected normal epithelium, we performed an upstream
transcriptional regulator analysis which predicts transcriptional regulators that are either
“inhibited” or “activated” based on differentially expressed genes (Supplementary Table 2).
Atop the list of inhibited transcription factors is TP53, which is known to be mutated in 80%
of basal-like breast cancers and is the most common recurrently mutated in gene in
TNBC[17]. In addition, we observe RB1 as significantly inhibited in TNBC. Previous data
has demonstrated functional loss of RB1 with loss of heterozygosity observed in 72% of
basal-like breast cancers[18]. Further, genomic sequencing has also demonstrated mutations
within the RB1 gene and an enrichment of somatic mutations within RB-associated protein
binding sites in TNBC[16]. As RB1 is a canonical suppressor of the E2F1 transcription
factor, our analysis shows significant activation of E2F1 as would be expected. In addition
our analysis demonstrates inhibition of the tumour suppressor CDKN2A (p16) most likely
due to loss of function of RB1, activation of the MYC oncogene whose network is known to
be activated in basal-like breast cancer[17], and activation of the FOXM1 transcription
factor (discussed later in the results).

Congruency of gene expression with results of TNBC clinical trials

We next examined genes that had been targeted in clinical trials enriched for TNBC patients,
specifically, EGFR, KIT, and PARP1. EGFR and KIT, which have previously been shown
to be over-expressed in TNBC by microarray[23] and immunohistochemistry when
compared to other breast cancer subtypes, were not differentially expressed and down-
regulated, respectively, when compared to normal breast in our study (Table 1).
Interestingly, the expression of PARP1, whose inhibitors have shown clinical activity in
BRCAL1 mutated and sporadic TNBCs, was significantly upregulated compared to normal.
To further validate these findings, we assessed the gene expression of EGFR, KIT, and
PARP1 in a separate cohort of 26 frozen TNBCs and 10 microdissected normal samples by
gPCR (Supplementary Figure 3). The gPCR data from the validation cohort confirmed the
findings from the next-generation sequencing of a lack of differential expression of EGFR,
downregulation of KIT, and upregulation of PARP1. To further confirm at the protein level,
we performed immunohistochemistry (IHC) for EGFR and KIT on 20 normal breast tissues
and 11 TNBCs (Supplementary Figure 4). The IHC also demonstrates no difference in
EGFR expression and downregulation of KIT in TNBC compared to normal. The lack of
transcriptional upregulation (compared with normal breast), and the lack of recurrent
activating mutations in these two genes might explain the disappointing outcomes to several
clinical trials implementing agents designed to target these pathways (Table 1)[24-28]. To
further validate the role of over-expression of drug targets with efficacy, we used data from
the Cancer Cell Line Encyclopedia (CCLE) [29] which contains data of 13 TNBC cell lines
treated with 24 cancer drugs (Supplementary Table 3). As seen in Supplementary Figure 5,
we find that drugs that target genes that are over-expressed in our TNBC vs. Microdissected
Normal dataset had significantly lower 1C50s in treated TNBC cell lines than those that did
not (p<0.0001).

Transcriptional chaos contributes to TNBC heterogeneity

In order to gain a better understanding of how individual TNBCs differ from microdissected
normal breast tisssues, we compared each of our 94 TNBCs individually versus the set of 20
microdissected normal breast tissues. We then plotted the number of differentially expressed
genes per TNBC on a waterfall plot (Figure 3A) to demonstrate that there is a significant
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range in the number of dysregulated genes (“transcriptional chaos”) between individual
TNBCs (1328 — 3594 differentially expressed genes). To validate this transcriptional chaos,
we correlated the number of differentially expressed genes for each TNBC with their
number of non-silent somatic DNA mutations as reported by the TCGA Broad Firehose
application[30]. 76 of the 94 TNBCs had DNA mutational data available. In Figure 3B,
there was indeed a significant correlation between transcriptional chaos and non-silent
somatic DNA mutations (p=0.0007) suggesting that DNA mutational events play a
significant role in the transcriptional chaos that is being observed. To delve deeper into this
association, we used analyzed TNBC TCGA data from the Memorial-Sloan Kettering
Cancer Center cBioPortal for Cancer Genomics[31,32]. Using the same 76 TNBCs that had
DNA mutational data available, we first checked to see if genes that are commonly mutated
in TNBC (either by base mutations, amplification, or deletion) are associated with
transcriptional chaos. Interestingly, we see no significant association between mutations in
TP53 (p=0.57), MYC (p=0.86), PIK3CA (p=0.28), or RB1 (p=0.73) and transcriptional
chaos. In addition, we further examined whether there was an association between
transcriptional chaos and the fraction of somatic copy number altered genome as reported by
cBioPortal and again saw no association (p=0.25). Taken together, we observe that
transcriptional chaos is mutationally dictated primarily by the conglomerate of DNA
mutations, both common and rare.

We then sought to determine whether this transcriptional chaos can add additional
information to the currently known subtypes of TNBC. To better discriminate, we focused
on TNBCs within the top and bottom quartiles of transcriptional chaos, and plotted them on
an unsupervised PCA (using RPKM values of all expressed genes) (Figure 4A). In addition,
to avoid any bias from data merging, we plotted only the TCGA samples using the raw log2
transformed RPKM values. We indeed observed a separation of TNBCs based on
unsupervised PCA into low and high transcriptional chaos groups. To further determine
whether this observation adds to what is currently known about TNBC heterogeneity, we
subtyped our TNBCs using the Vanderbilt TNBCtype tool (https://cbc.mc.vanderbilt.edu/
tnbc/) (Supplementary Table 4). We then compared the PCA of the TNBC samples colored
by transcriptional chaos to the same PCA colored by Vanderbilt TNBCtype, and
demonstrate that transcriptional chaos adds additional information along with the TNBC
subtype in explaining the heterogeneity (Figure 4B). Samples were also subtyped by
PAMS50[33,34], but because only 7 of 94 TNBCs were non-basal, a proper comparison
between transcriptional chaos and PAM50 could not be performed. To determine whether
known clinical factors can explain transcriptional chaos, we found no significant association
of transcriptional chaos with age, stage, or race (Supplementary Table 5). TCGA did not
have grade available, though the vast majority of TNBCs are Grade 3 [22], and a survival
analysis was not performed secondary to too few reported survival events (7 deaths out of 94
samples). To further understand the nature of the transcriptional chaos, we performed a
correlation analysis of all expressed genes with transcriptional chaos (Supplementary Table
6). Analysis of the top positive-correlated genes (r > 0.5, p< 2.57x107) revealed strong
involvement in proliferation, cell cycle, and DNA replication, including: TUBG1, AURKA,
EBNA1BP2, FAM58A, CENPA, SUV39H1, CCNB1, RRM2, RNASEH1, DKC1, and
NABP2.

Chaos analysis reveals a set of TNBC core genes regulated by a FOXM1 network

Finally, we sought to determine whether there were any transcriptional denominators that
served as underlayment for TNBC biology. We filtered the results of our transcriptional
chaos analysis to only those genes that were differentially expressed in >90% of our TNBC
samples (85 or more of 94 TNBCs). This resulted in 146 genes referred to as the “TNBC
core genes” (Supplementary Table 7). Network analysis of the 146 core genes identified a
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major hub network regulated by the transcription factor FOXM1. As shown in Figure 5,
when focusing only on the 146 core genes, FOXML1 directly regulates 13 of these core
genes. When taken to second level interactions, those 13 genes directly regulate an
additional 32 core genes. Altogether, the FOXM1 hub network directly regulates 47 of 146
TNBC core genes as known by the IPA database. Of interest, the FOXML1 gene itself is
17.2-fold over-expressed in TNBC compared to microdissected normal. Altogether, these
data suggest that FOXMZ1 acts as a regulator of a substantial number of genes that define the
core transcriptional dysregulation present in TNBC.

DISCUSSION

Using differential gene expression and pathway analysis we demonstrate that microdissected
normal tissues are an optimal comparator to adjacent normal tissues for studying TNBC
gene expression. Of interest, we were able to identify key pathways using both comparators,
but adjacent normal tissues added pathways indicative of stroma. This is not surprising, as
histologically “normal” tissue adjacent to tumor is comprised of a milieu of stromal cells
that complicate a normal epithelium vs. tumor epithelium analysis. This observation is
obviously due to the adjacent normal not being microdissected, though use of adjacent
normal as a comparator for breast studies is commonly used. Further, factors secreted by
tumors can have a substantial effect on the transcriptomes of normal epithelium near the
tumor, referred to as “field effect”[35,36]. Indeed, it has been previously demonstrated that
microdissected normal epithelium adjacent to tumor were subject to gene expression
dysregulation, aberrant methylation, and loss of heterozygosity events[10-14]. In addition,
previous data have demonstrated that adjacent normal tissue contains gene expression
patterns indicative of wound healing[37] (congruent with our observations of genes involved
in edema and angiogenesis in the adjacent normal), as well as can serve as a predictor of
clinical outcome[38], further reinforcing abnormal dysregulation in the adjacent normal. A
commonly used alternative is the use of reduction mammoplasty tissue, both dissected and
undissected. While usually derived from healthy patients, the need for surgery secondary to
hyperplasticity combined with the relative occurrence of pathologic atypia[7-9], as well as
adipose contamination if not dissected, makes these samples less optimal as controls.
Another possible alternative control is matched contralateral normal breast tissue from
breast cancer patients. Data is limited on this type of control, but recently published data
points to changes in lipid metabolism genes in contralateral normal as biomarkers of ER-
specific breast cancer risk[39]. In practical terms, matched contralateral breast tissue is not
normally collected at the time of surgery and not widely available for research.

We also observed that the canonical pathway analysis comparing TNBC vs. microdissected
normal detected cues of non-epithelial cell-types, in particular, immune cells. While tumor
cellularity in our TNBC sample set was high as was required of both TCGA breast cancer
tissues[17] as well as the IU TNBC tissues, non-epithelial infiltrating cells are present.
While having these non-epithelial cells in the analysis did not mask finding tumor epithelial
specific pathways as evidenced by some of the top hits (Role of BRCAL in DNA Damage
Response, Cell Cycle: G2/M DNA Damage Checkpoint, and Cell Cycle Control of
Chromosomal Replication), we find having the intrinsic microenvironment in our analysis
an advantage. In particular, the intrinsic microenvironment can assist in identifying
therapeutic targets that would not be identified if the tumor microenvironment was absent
due to microdissection. A key example is PD-1 (Programmed Death 1) which is expressed
on the surface of tumor infiltrating immune cells and is up-regulated in our dataset (Gene
Symbol PDCD1, Fold-Change=10.23, p=0.0009), has been recently demonstrated to be
associated with poor survival in all subtypes of breast cancer including basal-like/
TNBC[40]. This is further evidenced by a recently initiated Phase Ib clinical trial testing the
PD-1 inhibitor, Lambrolizumab, in solid tumors with a specific focus on TNBC (http://
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clinicaltrials.gov/show/NCT01848834). Taken together, we find the role of these non-
epithelial cells present in TNBCs (even though a minority population) an important aspect of
the analysis. Further, to independently validate our findings, we compared our differentially
expressed genes (Supplementary Table 1) to a recently published set of differentially
expressed genes derived from 30 microdissected TNBCs and 13 normal ductal epithelium
using microarrays [41]. We validated by determining the number of overlapping genes
between the two datasets where the direction of the fold-change was the same and the p-
value<0.05. We found 80% of the significant genes in the smaller microarray dataset had
validated in our larger RNA-seq dataset, providing an independent validation.

To clinically associate our results, we compared the differential expression of previously
tested targeted agents to clinical trial outcomes. This was most strikingly illustrated by the
fact that some genes previously reported to be over-expressed in TNBC by microarray and
immunohistochemistry (e.g. EGFR and KIT) were not up-regulated when compared to
normal ductal epithelium in this study [42,43]. In contradistinction, one of the few targeted
agents that has shown clinical activity in a randomized trial enriched for patients with TNBC
was Iniparib (BSI-201), a PARP inhibitor[44]. The target for Iniparib (PARP1) is 3-fold
over expressed in TNBC compared to normal in our study. While the subsequent
randomized phase 11 trial did not support clear and uniform activity for all patients with
sporadic TNBC, there were multiple confounding variables including the presumed
mechanism of activity[45]. Other trials using agents with robust PARP inhibition in selected
populations with TNBC have demonstrated exquisite sensitivity[46—48]. Taken together, our
data is in congruence with current clinical trial outcomes of agents that target these proteins
(Table 1), and suggests that comparing TNBC to microdissected ductal epithelium versus
other comparators may yield better therapeutic targets.

We then sought to determine if we could use microdissected normal epithelium to better
understand TNBC transcriptional heterogeneity. We performed a transcriptional chaos
analysis by comparing each individual TNBC to the set of 20 microdissected normals,
demonstrating a wide range in the number of genes that are dysregulated in each individual
TNBC. “Chaos” is a proper term for this analysis as any number of 14,156 genes was
dysregulated in at least 2 or more TNBCs. Further the term “chaos” is supported by the
observation that transcriptional chaos is associated with the number of non-silent DNA
mutations, of which the vast majority are not recurrent. This suggests an interesting link
between the burden of non-recurrent, non-silent DNA mutations with observed
transcriptional heterogeneity. Of interest, transcriptional chaos was not associated with
stage, age, or race, but was correlated with the expression of genes involved in proliferation,
cell cycle, and DNA damage repair. Recently, studies using various modalities have sought
to subtype TNBCs into distinct molecular subtypes with varying degrees of
overlap[15,19,17]. To understand how transcriptional chaos plays a role, we compared our
chaos results with TNBCtype and PAM50, and demonstrate that transcriptional chaos adds
additional information to molecular subtypes. This suggests that while the commonly used
subtyping methods do separate samples into various groups, its the individual uniqueness of
each TNBC and its difference compared to normal that also dictates heterogeneity.

Lastly, in the midst of the transcriptional chaos, we sought to determine whether any genes
were present that served as transcriptional denominators for TNBC. We identified 146 genes
that were dysregulated in >90% of TNBCs (“TNBC core genes”). Strikingly, out of 14,271
expressed RefSeq genes in this study, these core genes represent only 1%. Of this small
fraction we demonstrate that over-expressed FOXML1 is a master regulator of a significant
fraction of these core genes. FOXML is a transcription factor known for its role in mediating
cell cycle progression and metastasis[49,50]. Indeed, several of the genes involved in the
FOXM1 TNBC core gene network are involved in proliferation and cellular movement
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(Figure 5). To support the importance of FOXM1, data from the TCGA has identified
activation of FOXML1 as a basal-like specific network when compared to the other intrinsic
subtypes[17]. Taken together, these data suggest that targeting FOXMZ1 or its network
members may serve as potential therapeutic targets for TNBC.

In summation, we present a comprehensive and novel characterization of the differential
expression of a lethal disease with no FDA-approved targeted therapies using RNA-seq
technology. By using microdissected normal epithelium from healthy volunteers we
demonstrate the utility of this tissue to uncover novel biological insights into TNBC biology
and for informing future drug development. Further, we show that a significant portion of
observed transcriptional heterogeneity can be explained by transcriptional chaos that was
uncovered only through the use of a normal control.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Unsupervised principal components analysis (PCA) of 14,271 expressed genes
demonstrating global gene expression differences between microdissected normal tissue
from healthy volunteers, adjacent histologically normal tissue, and triple-negative breast
cancers. The sample types cluster into three distinct groups with the TNBCs from IU and
from the TCGA clustering together, demonstrating effective merging of the data. IU =
Indiana University; KTB = Susan G. Komen Tissue Bank at the Indiana University Simon
Cancer Center; TCGA= The Cancer Genome Atlas.
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Adjacent Normal vs. Microdissected Normal Tissue (933 Genes)
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Dendritic Cell Maturation 1.39e-07 Mitotic Roles of Polo-Like Kinase 8.47e-03 Estrogen-mediated S-phase Entry 1.86e-06
Cell Cycle Control of Chromosomal Replication | 2.75e-07 Estrogen-mediated S-phase Entry 4.33e-08 Hepatic Fibrosis/Stellate Cell Activation 3.43e-06
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Antigen Presentation Pathway 7.61e-08 LXR/RXR Activation 1.28e-03
NFAT1in Regulation of the Immune Response 1.98e-06 Melatonin Degradation || 1.49e-03
Signaling by Rho Family GTPases 8.60e-06 B-alanine Degradation | 5.39e-03
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Figure?2.

Venn diagram of differentially expressed genes (FDR<5%, Fold-Change>+/-2) compared
between each tissue type and their overlap. In order to elucidate the biological differences
between these analyses, canonical pathway analysis was performed using Ingenuity Pathway
Analysis. The top 5 pathways ranked by p-value are shown for the TNBC vs.

Microdissected Normal and the TNBC vs. Adjacent Normal comparisons, as well as for the
genes that are specific to those analyses (that did not overlap on the Venn diagram). In
addition, the top 5 pathways for those genes that overlapped between TNBC vs
Microdissected AND Adjacent Normal Tissues are shown.
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Figure 3.

(A) Waterfall plot comparing the number of differentially expressed genes for each
individual TNBC vs. microdissected normal tissues (Transcriptional Chaos). A significant
range is observed from 1328 — 3594 differentially expressed genes. (B) To provide DNA-
level evidence of transcriptional chaos, mutation data from exome sequencing was available
on 76 TCGA TNBCs downloaded from the TCGA Broad Firehose Application. A positive
correlation is observed between transcriptional chaos and the number of non-silent DNA
mutations.
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Figure 4.

TCGA TNBC samples representing the top and bottom quartiles of transcriptional chaos
were plotted using an unsupervised PCA. A separation of TNBC samples is observed based
on transcriptional chaos. (A) Samples labelled by top and bottom quartiles. (B) The same
samples labelled by Vanderbilt TNBC molecular subtype. (BL1: basal-like 1; BL2: basal-
like 2; IM: immunomodulatory; M: mesenchymal; MSL: mesenchymal stem-like; LAR:
luminal androgen receptor, UNS: Unspecified)
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Figure5.

Network analysis of FOXM1 within the context of the 146 TNBC core genes. Arrows in
gold represent direct interactions of FOXM1 with 14 of 146 core genes. Grey arrows
represent the second level of interactions adding an additional 32 of 146 core genes. In total
47 of 146 (32%) core genes are regulated by FOXM1, demonstrating that this protein is a
regulator of the TNBC core gene set. (Red = Overexpression)
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Differential gene expression of drug targets clinically tested in enriched TNBC patient populations.

Treatment Target | RNA Sequencing Fold Change Clinical Trial Outcomes
TNBC vs. Normal (p-value)
Cetuximab
EGFR | Not Overexpressed | —2.39 (P=0.14, NS) Negative
Gefitinib
Imatinib
KIT Not Overexpressed | —6.45 (P=4.9x107%) Negative
Dasatinib
Iniparib, Olaparib, PARP Overexpressed 3.32 (P=1.6x1077) Some activity (in BRCA mutant TNBCs), newer

Rucaparib and others

PARP inhibitors currently in clinical trial
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