4 research outputs found

    Neural Assets: Volumetric Object Capture and Rendering for Interactive Environments

    Full text link
    Creating realistic virtual assets is a time-consuming process: it usually involves an artist designing the object, then spending a lot of effort on tweaking its appearance. Intricate details and certain effects, such as subsurface scattering, elude representation using real-time BRDFs, making it impossible to fully capture the appearance of certain objects. Inspired by the recent progress of neural rendering, we propose an approach for capturing real-world objects in everyday environments faithfully and fast. We use a novel neural representation to reconstruct volumetric effects, such as translucent object parts, and preserve photorealistic object appearance. To support real-time rendering without compromising rendering quality, our model uses a grid of features and a small MLP decoder that is transpiled into efficient shader code with interactive framerates. This leads to a seamless integration of the proposed neural assets with existing mesh environments and objects. Thanks to the use of standard shader code rendering is portable across many existing hardware and software systems

    TECTONOPHYSICAL EVIDENCES OF GEODYNAMIC EVOLUTION OF THE PRIKOLYMA TERRAIN (NORTH-EASTERN REGIONS OF RUSSIA)

    Get PDF
    The Prikolyma terrain is a part of the Yana-Kolyma orogenic belt located in the North Eastern Asia. It is generally composed of the Proterozoic deposits, including sandstones, metapellites, quartz-feldspar and carbonate rocks, meta- and hyperbasites. The Prikolyma terrain represents a fragment of passive margin of the North-Asian craton that was detached in the Middle Paleozoic due to progressing rifting. Subsequent geological development of the terrain was determined by accretion events at its boundary with margin of the North-Asian craton and the Omolon microcraton. Its longterm geodynamic evolution is reflected in the character and sequence of formation of the Prikolyma terrain deformation structures. In the central part of the Prikolyma terrain, i.e. in the basin of the Malaya Stolbovaya river, two reference areas of tectonics were studied, which contain packs of thrust sheets complicated by subsequent highangle faults.The fault pattern is complex, and its major elements are gently dipping zones of plastic deformation, which mark the boundaries of petrographically heterogenous plates. The thrust packs  are more than 200 m thick; their root zones are represented by series of highangle reverse faults. Another important element of the fault pattern is highangle zones of brittle deformation, which kinematic characteristics are ambiguous. A vertical component of displacement is predominant for the faults of the north-western strike; a strike-slip component is characteristic of latitudinal and meridional faults. The fault pattern developed in several stages under the impact of fields of tectonic stress, which vectors were variable. The folds, comprising a uniform structural paragenesis with thrusts, are of great importance for the structure under study. The largest folds exhibit the asymmetric structure with the N-E dipping axial planes. Axes of smaller folds are oriented to N-W and N–NW.Four stages of deformation are distinguished in the history of geological development of the Prikolyma terrain. The earliest stage was characterized by the N-E compression resulting in formation of the N-W-oriented thrusts and folds and zones of greenschiest dynamo-metamorphism. During the second stage, the axis of compression gained the E–NE orientation, and the axis of extension was oriented to the N–NW, which influenced the formation of the submeridional reverse faults and thrusts. During the third stage, the axis of compression was N-W oriented, and the axis of extension gained the N-E orientation. Thereat, the sublatitudinal and submeridional structures were activated as strike-slip faults, the N-W structures as normal faults, and the N-E structures as reverse faults. The above resulted in the formation of structures of volume extension, which are favorable for localization of magmatic bodies and ore streaky-veined structures. At the final stage, compression in the meridional direction lead to the formation of thrusts and reverse faults along the sublatitudinal displacements, normal faults along the submeridional displacements, and strike-slips along the N-E and NW displacements.The first deformation stage was contemporaneous with the long-term period of compression in the Riphean and Early Paleozoic, when the dynamo-metamorphic complex of the Prikolyma terrain was developed. In the second stage, the Prikolyma terrain was detached from the margin of the North-Asian craton. In the Early Cretaceous, the third stage took place, when rearrangements of the field of tectonic stresses and transition to conditions of general extension caused emplacement of granitoids and quartz veining. The N-W orientation of the compression vector suggests that the third stage was related to the regional tangential compression due to the asymmetrical collision of the Prikolyma terrain and the Omolon microcraton. In the final stage, rotation of the vector of compression, associated with development of numerous N-W and N-E-oriented fractures, reflected the occurrence of the epiorogenic rifting. The above-described stages of formation of the deformation structure of the Prikolyma terrain are evidently correlated with the main tectono-magmatic stages of development of the NE margin of the North-Asian craton, which took place in the Late Paleozoic and the Mesozoic

    ТЕКТОНОФИЗИЧЕСКИЕ КРИТЕРИИ ГЕОДИНАМИЧЕСКОЙ ЭВОЛЮЦИИ ПРИКОЛЫМСКОГО ТЕРРЕЙНА (СЕВЕРО-ВОСТОК РОССИИ)

    Get PDF
    The Prikolyma terrain is a part of the Yana-Kolyma orogenic belt located in the North Eastern Asia. It is generally composed of the Proterozoic deposits, including sandstones, metapellites, quartz-feldspar and carbonate rocks, meta- and hyperbasites. The Prikolyma terrain represents a fragment of passive margin of the North-Asian craton that was detached in the Middle Paleozoic due to progressing rifting. Subsequent geological development of the terrain was determined by accretion events at its boundary with margin of the North-Asian craton and the Omolon microcraton. Its longterm geodynamic evolution is reflected in the character and sequence of formation of the Prikolyma terrain deformation structures. In the central part of the Prikolyma terrain, i.e. in the basin of the Malaya Stolbovaya river, two reference areas of tectonics were studied, which contain packs of thrust sheets complicated by subsequent highangle faults.The fault pattern is complex, and its major elements are gently dipping zones of plastic deformation, which mark the boundaries of petrographically heterogenous plates. The thrust packs  are more than 200 m thick; their root zones are represented by series of highangle reverse faults. Another important element of the fault pattern is highangle zones of brittle deformation, which kinematic characteristics are ambiguous. A vertical component of displacement is predominant for the faults of the north-western strike; a strike-slip component is characteristic of latitudinal and meridional faults. The fault pattern developed in several stages under the impact of fields of tectonic stress, which vectors were variable. The folds, comprising a uniform structural paragenesis with thrusts, are of great importance for the structure under study. The largest folds exhibit the asymmetric structure with the N-E dipping axial planes. Axes of smaller folds are oriented to N-W and N–NW.Four stages of deformation are distinguished in the history of geological development of the Prikolyma terrain. The earliest stage was characterized by the N-E compression resulting in formation of the N-W-oriented thrusts and folds and zones of greenschiest dynamo-metamorphism. During the second stage, the axis of compression gained the E–NE orientation, and the axis of extension was oriented to the N–NW, which influenced the formation of the submeridional reverse faults and thrusts. During the third stage, the axis of compression was N-W oriented, and the axis of extension gained the N-E orientation. Thereat, the sublatitudinal and submeridional structures were activated as strike-slip faults, the N-W structures as normal faults, and the N-E structures as reverse faults. The above resulted in the formation of structures of volume extension, which are favorable for localization of magmatic bodies and ore streaky-veined structures. At the final stage, compression in the meridional direction lead to the formation of thrusts and reverse faults along the sublatitudinal displacements, normal faults along the submeridional displacements, and strike-slips along the N-E and NW displacements.The first deformation stage was contemporaneous with the long-term period of compression in the Riphean and Early Paleozoic, when the dynamo-metamorphic complex of the Prikolyma terrain was developed. In the second stage, the Prikolyma terrain was detached from the margin of the North-Asian craton. In the Early Cretaceous, the third stage took place, when rearrangements of the field of tectonic stresses and transition to conditions of general extension caused emplacement of granitoids and quartz veining. The N-W orientation of the compression vector suggests that the third stage was related to the regional tangential compression due to the asymmetrical collision of the Prikolyma terrain and the Omolon microcraton. In the final stage, rotation of the vector of compression, associated with development of numerous N-W and N-E-oriented fractures, reflected the occurrence of the epiorogenic rifting. The above-described stages of formation of the deformation structure of the Prikolyma terrain are evidently correlated with the main tectono-magmatic stages of development of the NE margin of the North-Asian craton, which took place in the Late Paleozoic and the Mesozoic.Приколымский террейн является составной частью Яно-Колымского орогенного пояса северо-востока Азии. Он сложен главным образом протерозойскими образованиями: песчаниками, метапелитами, кварц-полевошпатовыми и карбонатными породами, метабазитами и гипербазитами. Приколымский террейн представляет собой фрагмент пассивной окраины Северо-Азиатского кратона, отторгнутый в среднем палеозое вследствие прогрессировавшего рифтинга. Дальнейшее геологическое развитие террейна определялось аккреционными событиями на его границах с окраиной Северо-Азиатского кратона и Омолонским микрократоном. Длительная геодинамическая эволюция нашла свое отражение в характере и последовательности образования деформационных структур Приколымского террейна. Изучены два опорных участка земной коры в центральной части Приколымского террейна (бассейн р. Малая Столбовая), представляющих собой пакеты надвиговых чешуй, осложненные поздними крутопадающими разломами. Сеть разломов имеет сложное строение. Одним из основных ее элементов являются пологие зоны пластических деформаций, маркирующие границы петрографически разнородных тектонических пластин. Мощности надвиговых пакетов превышают 200 м, а их корневые зоны  представлены сериями крутопадающих взбросов. Другим важным элементом разломной сети являются крутопадающие зоны хрупких деформаций. Их кинематические характеристики неоднозначны. У дизъюнктивов северо-западного простирания преобладает вертикальная компонента смещения, у широтных и меридиональных – сдвиговая. Формирование сети разрывных нарушений происходило в течение нескольких этапов под действием различных полей тектонических напряжений. Большую роль в структуре играют складки, образующие единый парагенез с надвигами. Наиболее крупные из них имеют асимметричное строение с падением осевых плоскостей на северо-восток. Оси более мелких складок ориентированы в северо-западном и север-северо-западном направлениях.В истории геологического развития Приколымского террейна выделены четыре деформационных этапа. Наиболее ранний характеризовался сжатием в северо-восточном направлении, в результате которого образовались надвиги и складки северо-западной ориентировки, зоны зеленосланцевого динамометаморфизма. На втором этапе ось сжатия приобрела восток-северо-восточную ориентировку, а растяжения – север-северо-западную, что отразилось в формировании субмеридиональных взбросов и надвигов. В течение третьего этапа ось сжатия имела северо-западную, а ось растяжения – северо-восточную ориентировку. Субширотные и субмеридиональные структуры при этом активизировались как сдвиги, северо-западные – как сбросы, а северо-восточные – как взбросы. В результате формировались структуры объемного растяжения, благоприятные для локализации магматических тел и прожилковожильных образований. На завершающем этапе сжатие в меридиональном направлении привело к образованию надвигов и взбросов по субширотным нарушениям, сбросов – по субмеридиональным, сдвигов – по северо-восточным и северо-западным. Первый деформационный этап параллелизуется с крупной рифейско-раннепалеозойской эпохой сжатия, сформировавшей динамометаморфический комплекс Приколымского террейна. Второй этап отразил обособление Приколымского террейна от окраины Северо-Азиатского кратона. В раннем мелу перестройка поля тектонических напряжений и переход к условиям общего растяжения на третьем этапе привели к внедрению гранитоидов и формированию зон кварцевого прожилкования. Северо-западная ориентировка вектора сжатия позволяет увязать этот этап с региональным тангенциальным сжатием в результате косой коллизии Приколымского террейна с Омолонским микрократоном. На завершающем этапе поворот вектора сжатия с образованием многочисленных трещин северо-западной и северо-восточной ориентировки отразил проявление эпиорогенного рифтогенеза.Выделенные этапы формирования деформационной тектонической структуры Приколымского  террейна четко параллелизуются с главными тектономагматическими этапами развития северо-восточной окраины Северо-Азиатского кратона – позднепалеозойским и мезозойским

    Interventions for the treatment of oral cavity and oropharyngeal cancer:chemotherapy

    Get PDF
    <b>Background:</b> Oral cavity and oropharyngeal cancers are frequently described as part of a group of oral cancers or head and neck cancer. Treatment of oral cavity cancer is generally surgery followed by radiotherapy, whereas oropharyngeal cancers, which are more likely to be advanced at the time of diagnosis, are managed with radiotherapy or chemoradiation. Surgery for oral cancers can be disfiguring and both surgery and radiotherapy have significant functional side effects, notably impaired ability to eat, drink and talk. The development of new chemotherapy agents, new combinations of agents and changes in the relative timing of surgery, radiotherapy, and chemotherapy treatments may potentially bring about increases in both survival and quality of life for this group of patients.<p></p> <b>Objectives:</b> To determine whether chemotherapy, in addition to radiotherapy and/or surgery for oral cavity and oropharyngeal cancer results in improved survival, disease free survival, progression free survival, locoregional control and reduced recurrence of disease. To determine which regimen and time of administration (induction, concomitant or adjuvant) is associated with better outcomes.<p></p> <b>Search strategy:</b> Electronic searches of the Cochrane Oral Health Group's Trials Register, CENTRAL, MEDLINE, EMBASE, AMED were undertaken on 28th July 2010. Reference lists of recent reviews and included studies were also searched to identify further trials.<p></p> <b>Selection criteria:</b> Randomised controlled trials where more than 50% of participants had primary tumours in the oral cavity or oropharynx, and which compared the addition of chemotherapy to other treatments such as radiotherapy and/or surgery, or compared two or more chemotherapy regimens or modes of administration, were included.<p></p> <b>Data collection and analysis:</b> Trials which met the inclusion criteria were assessed for risk of bias using six domains: sequence generation, allocation concealment, blinding, completeness of outcome data, selective reporting and other possible sources of bias. Data were extracted using a specially designed form and entered into the characteristics of included studies table and the analysis sections of the review. The proportion of participants in each trial with oral cavity and oropharyngeal cancers are recorded in Additional Table 1.<p></p> <b>Main results:</b> There was no statistically significant improvement in overall survival associated with induction chemotherapy compared to locoregional treatment alone in 25 trials (hazard ratio (HR) of mortality 0.92, 95% confidence interval (CI) 0.84 to 1.00). Post-surgery adjuvant chemotherapy was associated with improved overall survival compared to surgery +/- radiotherapy alone in 10 trials (HR of mortality 0.88, 95% CI 0.79 to 0.99), and there was an additional benefit of adjuvant concomitant chemoradiotherapy compared to radiotherapy in 4 of these trials (HR of mortality 0.84, 95% CI 0.72 to 0.98). Concomitant chemoradiotherapy resulted in improved survival compared to radiotherapy alone in patients whose tumours were considered unresectable in 25 trials (HR of mortality 0.79, 95% CI 0.74 to 0.84). However, the additional toxicity attributable to chemotherapy in the combined regimens remains unquantified.<p></p> <b>Authors' conclusions:</b> Chemotherapy, in addition to radiotherapy and surgery, is associated with improved overall survival in patients with oral cavity and oropharyngeal cancers. Induction chemotherapy is associated with a 9% increase in survival and adjuvant concomitant chemoradiotherapy is associated with a 16% increase in overall survival following surgery. In patients with unresectable tumours, concomitant chemoradiotherapy showed a 22% benefit in overall survival compared with radiotherapy alone.<p></p&gt
    corecore