390 research outputs found
Error threshold in finite populations
A simple analytical framework to study the molecular quasispecies evolution
of finite populations is proposed, in which the population is assumed to be a
random combination of the constiyuent molecules in each generation,i.e.,
linkage disequilibrium at the population level is neglected. In particular, for
the single-sharp-peak replication landscape we investigate the dependence of
the error threshold on the population size and find that the replication
accuracy at threshold increases linearly with the reciprocal of the population
size for sufficiently large populations. Furthermore, in the deterministic
limit our formulation yields the exact steady-state of the quasispecies model,
indicating then the population composition is a random combination of the
molecules.Comment: 14 pages and 4 figure
Non-native vascular flora of the Arctic : Taxonomic richness, distribution and pathways
We present a comprehensive list of non-native vascular plants known from the Arctic, explore their geographic distribution, analyze the extent of naturalization and invasion among 23 subregions of the Arctic, and examine pathways of introductions. The presence of 341 non-native taxa in the Arctic was confirmed, of which 188 are naturalized in at least one of the 23 regions. A small number of taxa (11) are considered invasive; these plants are known from just three regions. In several Arctic regions there are no naturalized non-native taxa recorded and the majority of Arctic regions have a low number of naturalized taxa. Analyses of the non-native vascular plant flora identified two main biogeographic clusters within the Arctic: American and Asiatic. Among all pathways, seed contamination and transport by vehicles have contributed the most to non-native plant introduction in the Arctic.Peer reviewe
Programmability of Chemical Reaction Networks
Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a well-stirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri Nets, Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines. A theme to these investigations is the thin line between decidable and undecidable questions about SCRN behavior
Homophily and Contagion Are Generically Confounded in Observational Social Network Studies
We consider processes on social networks that can potentially involve three
factors: homophily, or the formation of social ties due to matching individual
traits; social contagion, also known as social influence; and the causal effect
of an individual's covariates on their behavior or other measurable responses.
We show that, generically, all of these are confounded with each other.
Distinguishing them from one another requires strong assumptions on the
parametrization of the social process or on the adequacy of the covariates used
(or both). In particular we demonstrate, with simple examples, that asymmetries
in regression coefficients cannot identify causal effects, and that very simple
models of imitation (a form of social contagion) can produce substantial
correlations between an individual's enduring traits and their choices, even
when there is no intrinsic affinity between them. We also suggest some possible
constructive responses to these results.Comment: 27 pages, 9 figures. V2: Revised in response to referees. V3: Ditt
Power struggles in the remembering of historical intergroup conflict: hegemonic and counter-narratives about the Argentine “Conquest of the Desert”
This work has been supported by funding from the research projects PICT-2012–1594 and PICT-2014–1003 (FONCyT-Argentina), and a grant from the Latin American Studies, University of Uta
Correlation dynamics of three spin under a classical dephasing environment
By starting from the stochastic Hamiltonian of the three correlated spins and
modeling their frequency fluctuations as caused by dephasing noisy environments
described by Ornstein-Uhlenbeck processes, we study the dynamics of quantum
correlations, including entanglement and quantum discord. We prepared initially
our open system with Greenberger-Horne-Zeilinger or W state and present the
exact solutions for evolution dynamics of entanglement and quantum discord
between three spins under both Markovian and non-Markovian regime of this
classical noise. By comparison the dynamics of entanglement with that of
quantum discord we find that entanglement can be more robust than quantum
discord against this noise. It is shown that by considering non-Markovian
extensions the survival time of correlations prolong.Comment: 13 pages, 4 figure
Searching for gravitational waves from known pulsars
We present upper limits on the amplitude of gravitational waves from 28
isolated pulsars using data from the second science run of LIGO. The results
are also expressed as a constraint on the pulsars' equatorial ellipticities. We
discuss a new way of presenting such ellipticity upper limits that takes
account of the uncertainties of the pulsar moment of inertia. We also extend
our previous method to search for known pulsars in binary systems, of which
there are about 80 in the sensitive frequency range of LIGO and GEO 600.Comment: Accepted by CQG for the proceeding of GWDAW9, 7 pages, 2 figure
First upper limits from LIGO on gravitational wave bursts
We report on a search for gravitational wave bursts using data from the first
science run of the LIGO detectors. Our search focuses on bursts with durations
ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity
band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than
1.6 events per day at 90% confidence level. This result is interpreted in terms
of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians)
as a function of their root-sum-square strain h_{rss}; typical sensitivities
lie in the range h_{rss} ~ 10^{-19} - 10^{-17} strain/rtHz, depending on
waveform. We discuss improvements in the search method that will be applied to
future science data from LIGO and other gravitational wave detectors.Comment: 21 pages, 15 figures, accepted by Phys Rev D. Fixed a few small typos
and updated a few reference
Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors
Data collected by the GEO 600 and LIGO interferometric gravitational wave detectors during their first observational science run were searched for continuous gravitational waves from the pulsar J1939+2134 at twice its rotation frequency. Two independent analysis methods were used and are demonstrated in this paper: a frequency domain method and a time domain method. Both achieve consistent null results, placing new upper limits on the strength of the pulsar's gravitational wave emission. A model emission mechanism is used to interpret the limits as a constraint on the pulsar's equatorial ellipticity
- …