By starting from the stochastic Hamiltonian of the three correlated spins and
modeling their frequency fluctuations as caused by dephasing noisy environments
described by Ornstein-Uhlenbeck processes, we study the dynamics of quantum
correlations, including entanglement and quantum discord. We prepared initially
our open system with Greenberger-Horne-Zeilinger or W state and present the
exact solutions for evolution dynamics of entanglement and quantum discord
between three spins under both Markovian and non-Markovian regime of this
classical noise. By comparison the dynamics of entanglement with that of
quantum discord we find that entanglement can be more robust than quantum
discord against this noise. It is shown that by considering non-Markovian
extensions the survival time of correlations prolong.Comment: 13 pages, 4 figure