6,836 research outputs found
Current Practices of Organ Donation and Transplantation Among Different French-Speaking Countries and Regions
peer reviewedaudience: researcher, professional, studentThe aim of the “Transplantation Sans Frontières” (TSF) questionnaire, which was sent to
French-speaking centers in 6 different countries and regions, was to establish the current
status of organ donation and transplantation in their environments. It was also to examine
ways to collaborate and exchange scientific information, teaching, and training in the field
of organ transplantation. The French Society of Transplantation and the Agency of
Biomedicine already offer specific programs to expand local activities, and the World
Health Organization (WHO) regulates them. Therefore, TSF could be a coordinating
platform in the near future
Bayesian Networks for Max-linear Models
We study Bayesian networks based on max-linear structural equations as
introduced in Gissibl and Kl\"uppelberg [16] and provide a summary of their
independence properties. In particular we emphasize that distributions for such
networks are generally not faithful to the independence model determined by
their associated directed acyclic graph. In addition, we consider some of the
basic issues of estimation and discuss generalized maximum likelihood
estimation of the coefficients, using the concept of a generalized likelihood
ratio for non-dominated families as introduced by Kiefer and Wolfowitz [21].
Finally we argue that the structure of a minimal network asymptotically can be
identified completely from observational data.Comment: 18 page
Electronic dynamic Hubbard model: exact diagonalization study
A model to describe electronic correlations in energy bands is considered.
The model is a generalization of the conventional Hubbard model that allows for
the fact that the wavefunction for two electrons occupying the same Wannier
orbital is different from the product of single electron wavefunctions. We
diagonalize the Hamiltonian exactly on a four-site cluster and study its
properties as function of band filling. The quasiparticle weight is found to
decrease and the quasiparticle effective mass to increase as the electronic
band filling increases, and spectral weight in one- and two-particle spectral
functions is transfered from low to high frequencies as the band filling
increases. Quasiparticles at the Fermi energy are found to be more 'dressed'
when the Fermi level is in the upper half of the band (hole carriers) than when
it is in the lower half of the band (electron carriers). The effective
interaction between carriers is found to be strongly dependent on band filling
becoming less repulsive as the band filling increases, and attractive near the
top of the band in certain parameter ranges. The effective interaction is most
attractive when the single hole carriers are most heavily dressed, and in the
parameter regime where the effective interaction is attractive, hole carriers
are found to 'undress', hence become more like electrons, when they pair. It is
proposed that these are generic properties of electronic energy bands in solids
that reflect a fundamental electron-hole asymmetry of condensed matter. The
relation of these results to the understanding of superconductivity in solids
is discussed.Comment: Small changes following referee's comment
Reduction in Visceral Adiposity is Highly Related to Improvement in Vascular Endothelial Dysfunction among Obese Women: An Assessment of Endothelial Function by Radial Artery Pulse Wave Analysis
Because obesity is frequently complicated by other cardiovascular risk factors, the impact of a reduction in visceral adiposity on vascular endothelial dysfunction (VED) in obese patients is difficult to determine. In the present study, we evaluated the impact of a reduction in visceral adiposity on VED in obese women. Thirty-six premenopausal obese women (BMI ≥ 25 kg/m2) without complications were enrolled in the study. VED was evaluated by determining the augmentation index (AIx) from radial artery pulse waves obtained by applanation tonometry. Changes in AIx in response to nitroglycerin-induced endothelium-independent vasodilatation (ΔAIx-NTG) and in response to salbutamol administration (ΔAIx-Salb) were determined before and after weight reduction. After a 12-week weight reduction program, the average weight loss was 7.96±3.47 kg, with losses of 21.88±20.39 cm2 in visceral fat areas (p < 0.001). Pulse wave analysis combined with provocative pharmacological testing demonstrated preserved endothelium-independent vasodilation in healthy premenopausal obese women (ΔAIx-NTG: 31.36±9.80% before weight reduction vs. 28.25 ± 11.21% after weight reduction, p > 0.1) and an improvement in endothelial-dependent vasodilation following weight reduction (ΔAIx-Salb: 10.03±6.49% before weight reduction vs. 19.33 ± 9.28% after reduction, p < 0.001). A reduction in visceral adipose tissue was found to be most significantly related to an increase in ΔAIx-Salb (β=-0.57, p < 0.001). A reduction in visceral adiposity was significantly related to an improvement in VED. This finding suggests that reduction of visceral adiposity may be as important as the control of other major risk factors in the prevention of atherosclerosis in obese women
Study protocol: SPARCLE – a multi-centre European study of the relationship of environment to participation and quality of life in children with cerebral palsy
BACKGROUND: SPARCLE is a nine-centre European epidemiological research study examining the relationship of participation and quality of life to impairment and environment (physical, social and attitudinal) in 8–12 year old children with cerebral palsy. Concepts are adopted from the International Classification of Functioning, Disability and Health which bridges the medical and social models of disability. METHODS/DESIGN: A cross sectional study of children with cerebral palsy sampled from total population databases in 9 European regions. Children were visited by research associates in each country who had been trained together. The main instruments used were KIDSCREEN, Life-H, Strength and Difficulties Questionnaire, Parenting Stress Index. A measure of environment was developed within the study. All instruments were translated according to international guidelines. The potential for bias due to non response and missing data will be examined. After initial analysis using multivariate regression of how the data captured by each instrument relate to impairment and socio-economic characteristics, relationships between the latent traits captured by the instruments will then be analysed using structural equation modelling. DISCUSSION: This study is original in its methods by directly engaging children themselves, ensuring those with learning or communication difficulty are not excluded, and by studying in quantitative terms the crucial outcomes of participation and quality of life. Specification and publication of this protocol prior to analysis, which is not common in epidemiology but well established for randomised controlled trials and systematic reviews, should avoid the pitfalls of data dredging and post hoc analyses
Comparing Models for Early Warning Systems of Neglected Tropical Diseases
Early Warning Systems (EWS) are management tools to predict the occurrence of epidemics. They are based on the dependence of a given infectious disease on environmental variables. Although several neglected tropical diseases are sensitive to the effect of climate, our ability to predict their dynamics has been barely studied. In this paper, we use several models to determine if the relationship between cases and climatic variability is robust—that is, not simply an artifact of model choice. We propose that EWS should be based on results from several models that are to be compared in terms of their ability to predict future number of cases. We use a specific metric for this comparison known as the predictive R2, which measures the accuracy of the predictions. For example, an R2 of 1 indicates perfect accuracy for predictions that perfectly match observed cases. For cutaneous leishmaniasis, R2 values range from 72% to77%, well above predictions using mean seasonal values (64%). We emphasize that predictability should be evaluated with observations that have not been used to fit the model. Finally, we argue that EWS should incorporate climatic variables that are known to have a consistent relationship with the number of observed cases
Forcing Versus Feedback: Epidemic Malaria and Monsoon Rains in Northwest India
Malaria epidemics in regions with seasonal windows of transmission can vary greatly in size from year to year. A central question has been whether these interannual cycles are driven by climate, are instead generated by the intrinsic dynamics of the disease, or result from the resonance of these two mechanisms. This corresponds to the more general inverse problem of identifying the respective roles of external forcings vs. internal feedbacks from time series for nonlinear and noisy systems. We propose here a quantitative approach to formally compare rival hypotheses on climate vs. disease dynamics, or external forcings vs. internal feedbacks, that combines dynamical models with recently developed, computational inference methods. The interannual patterns of epidemic malaria are investigated here for desert regions of northwest India, with extensive epidemiological records for Plasmodium falciparum malaria for the past two decades. We formulate a dynamical model of malaria transmission that explicitly incorporates rainfall, and we rely on recent advances on parameter estimation for nonlinear and stochastic dynamical systems based on sequential Monte Carlo methods. Results show a significant effect of rainfall in the inter-annual variability of epidemic malaria that involves a threshold in the disease response. The model exhibits high prediction skill for yearly cases in the malaria transmission season following the monsoonal rains. Consideration of a more complex model with clinical immunity demonstrates the robustness of the findings and suggests a role of infected individuals that lack clinical symptoms as a reservoir for transmission. Our results indicate that the nonlinear dynamics of the disease itself play a role at the seasonal, but not the interannual, time scales. They illustrate the feasibility of forecasting malaria epidemics in desert and semi-arid regions of India based on climate variability. This approach should be applicable to malaria in other locations, to other infectious diseases, and to other nonlinear systems under forcing
Strongly magnetized pulsars: explosive events and evolution
Well before the radio discovery of pulsars offered the first observational
confirmation for their existence (Hewish et al., 1968), it had been suggested
that neutron stars might be endowed with very strong magnetic fields of
-G (Hoyle et al., 1964; Pacini, 1967). It is because of their
magnetic fields that these otherwise small ed inert, cooling dead stars emit
radio pulses and shine in various part of the electromagnetic spectrum. But the
presence of a strong magnetic field has more subtle and sometimes dramatic
consequences: In the last decades of observations indeed, evidence mounted that
it is likely the magnetic field that makes of an isolated neutron star what it
is among the different observational manifestations in which they come. The
contribution of the magnetic field to the energy budget of the neutron star can
be comparable or even exceed the available kinetic energy. The most magnetised
neutron stars in particular, the magnetars, exhibit an amazing assortment of
explosive events, underlining the importance of their magnetic field in their
lives. In this chapter we review the recent observational and theoretical
achievements, which not only confirmed the importance of the magnetic field in
the evolution of neutron stars, but also provide a promising unification scheme
for the different observational manifestations in which they appear. We focus
on the role of their magnetic field as an energy source behind their persistent
emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of
"NewCompStar" European COST Action MP1304, 43 pages, 8 figure
The genomes of two key bumblebee species with primitive eusocial organization
Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
- …