625 research outputs found

    The Extended Star Formation History of the Andromeda Spheroid at 35 Kpc on the Minor Axis

    Full text link
    Using the HST ACS, we have obtained deep optical images reaching well below the oldest main sequence turnoff in fields on the southeast minor-axis of the Andromeda Galaxy, 35 kpc from the nucleus. These data probe the star formation history in the extended halo of Andromeda -- that region beyond 30 kpc that appears both chemically and morphologically distinct from the metal-rich, highly-disturbed inner spheroid. The present data, together with our previous data for fields at 11 and 21 kpc, do not show a simple trend toward older ages and lower metallicities, as one might expect for populations further removed from the obvious disturbances of the inner spheroid. Specifically, the mean ages and [Fe/H] values at 11 kpc, 21 kpc, and 35 kpc are 9.7 Gyr and -0.65, 11.0 Gyr and -0.87, and 10.5 Gyr and -0.98, respectively. In the best-fit model of the 35 kpc population, one third of the stars are younger than 10 Gyr, while only ~10% of the stars are truly ancient and metal-poor. The extended halo thus exhibits clear evidence of its hierarchical assembly, and the contribution from any classical halo formed via early monolithic collapse must be small.Comment: Accepted for publication in The Astrophysical Journal Letters. 4 pages, latex, 2 color figure

    Inferring the Andromeda Galaxy's mass from its giant southern stream with Bayesian simulation sampling

    Full text link
    M31 has a giant stream of stars extending far to the south and a great deal of other tidal debris in its halo, much of which is thought to be directly associated with the southern stream. We model this structure by means of Bayesian sampling of parameter space, where each sample uses an N-body simulation of a satellite disrupting in M31's potential. We combine constraints on stellar surface densities from the Isaac Newton Telescope survey of M31 with kinematic data and photometric distances. This combination of data tightly constrains the model, indicating a stellar mass at last pericentric passage of log(M_s / Msun) = 9.5+-0.1, comparable to the LMC. Any existing remnant of the satellite is expected to lie in the NE Shelf region beside M31's disk, at velocities more negative than M31's disk in this region. This rules out the prominent satellites M32 or NGC 205 as the progenitor, but an overdensity recently discovered in M31's NE disk sits at the edge of the progenitor locations found in the model. M31's virial mass is constrained in this model to be log(M200) = 12.3+-0.1, alleviating the previous tension between observational virial mass estimates and expectations from the general galactic population and the timing argument. The techniques used in this paper, which should be more generally applicable, are a powerful method of extracting physical inferences from observational data on tidal debris structures.Comment: 27 pages, 10 figures. Accepted by MNRA

    The Panchromatic Hubble Andromeda Treasury II. Tracing the Inner M31 Halo with Blue Horizontal Branch Stars

    Full text link
    We attempt to constrain the shape of M31's inner stellar halo by tracing the surface density of blue horizontal branch (BHB) stars at galactocentric distances ranging from 2 kpc to 35 kpc. Our measurements make use of resolved stellar photometry from a section of the Panchromatic Hubble Andromeda Treasury (PHAT) survey, supplemented by several archival Hubble Space Telescope observations. We find that the ratio of BHB to red giant stars is relatively constant outside of 10 kpc, suggesting that the BHB is as reliable a tracer of the halo population as the red giant branch. In the inner halo, we do not expect BHB stars to be produced by the high metallicity bulge and disk, making BHB stars a good candidate to be a reliable tracer of the stellar halo to much smaller galactocentric distances. If we assume a power-law profile r^(-\alpha) for the 2-D projected surface density BHB distribution, we obtain a high-quality fit with a 2-D power-law index of \alpha=2.6^{+0.3}_{-0.2} outside of 3 kpc, which flattens to \alpha<1.2 inside of 3 kpc. This slope is consistent with previous measurements but is anchored to a radial baseline that extends much farther inward. Finally, assuming azimuthal symmetry and a constant mass-to-light ratio, the best-fitting profile yields a total halo stellar mass of 2.1^{+1.7}_{-0.4} x 10^9 M_sun. These properties are comparable with both simulations of stellar halo formation formed by satellite disruption alone, and with simulations that include some in situ formation of halo stars.Comment: 15 pages, 1 table, 5 figures, accepted for publication in Ap

    The kinematic footprints of five stellar streams in Andromeda's halo

    Get PDF
    (abridged) We present a spectroscopic analysis of five stellar streams (`A', `B', `Cr', `Cp' and `D') as well as the extended star cluster, EC4, which lies within streamC, all discovered in the halo of M31 from our CFHT/MegaCam survey. These spectroscopic results were initially serendipitous, making use of our existing observations from the DEep Imaging Multi-Object Spectrograph mounted on the Keck II telescope, and thereby emphasizing the ubiquity of tidal streams that account for ~70% of the M31 halo stars in the targeted fields. Subsequent spectroscopy was then procured in streamCr/p and streamD to trace the velocity gradient along the streams. For the cluster EC4, candidate member stars with average [Fe/H]~-1.4 (Fe/H_spec=-1.6), are found at v_{hel}=-285 km/s suggesting it could be related to streamCp. No similarly obvious cold kinematic candidate is found for streamD, although candidates are proposed in both of two spectroscopic pointings along the stream (both at -400 km/s). Spectroscopy near the edge of streamB suggests a likely kinematic detection, while a candidate kinematic detection of streamA is found (plausibly associated to M33 rather than M31). The low dispersion of the streams in kinematics, physical thickness, and metallicity makes it hard to reconcile with a scenario whereby these stream structures as an ensemble are related to the giant southern stream. We conclude that the M31 stellar halo is largely made up of multiple kinematically cold streams.Comment: 19 pages, 12 figures, accepted in MNRAS. High resolution version, with fig10 here: http://www.ast.cam.ac.uk/~schapman/streams.pd

    An HST/ACS View of the Inhomogeneous Outer Halo of M31

    Full text link
    We present a high precision photometric view of the stellar populations in the outer halo of M31, using data taken with the Hubble Space Telescope Advanced Camera for Surveys (HST/ACS). We analyse the field populations adjacent to 11 luminous globular clusters which sample the galactocentric radial range 18 < R < 100 kpc and reach a photometric depth of ~2.5 magnitudes below the horizontal branch (m_F814W ~27 mag). The colour-magnitude diagrams (CMDs) are well populated out to ~60 kpc and exhibit relatively metal-rich red giant branches, with the densest fields also showing evidence for prominent red clumps. We use the Dartmouth isochrones to construct metallicity distribution functions (MDFs) which confirm the presence of dominant populations with = -0.6 to -1.0 dex and considerable metallicity dispersions of 0.2 to 0.3 dex (assuming a 10 Gyr population and scaled-Solar abundances). The average metallicity over the range 30 - 60 kpc is [Fe/H] = -0.8 +/- 0.14 dex, with no evidence for a significant radial gradient. Metal-poor stars ([Fe/H] <= -1.3) typically account for < 10-20 % of the population in each field, irrespective of radius. Assuming our fields are unbiased probes of the dominant stellar populations in these parts, we find that the M31 outer halo remains considerably more metal-rich than that of the Milky Way out to at least 60 kpc.Comment: Accepted for publication in MNRAS. 10 pages, 6 figure

    Industrial constructions of publics and public knowledge: a qualitative investigation of practice in the UK chemicals industry

    Get PDF
    This is a post print version of the article. The official published version can be obtained from the link below - © 2007 by SAGE PublicationsWhile the rhetoric of public engagement is increasingly commonplace within industry, there has been little research that examines how lay knowledge is conceptualized and whether it is really used within companies. Using the chemicals sector as an example, this paper explores how companies conceive of publics and "public knowledge," and how this relates to modes of engagement/communication with them. Drawing on qualitative empirical research in four companies, we demonstrate that the public for industry are primarily conceived as "consumers" and "neighbours," having concerns that should be allayed rather than as groups with knowledge meriting engagement. We conclude by highlighting the dissonance between current advocacy of engagement and the discourses and practices prevalent within industry, and highlight the need for more realistic strategies for industry/public engagement.Funding was received from the ESRC Science in Society Programme

    Discovery and Precise Characterization by the MEarth Project of LP 661-13, an Eclipsing Binary Consisting of Two Fully Convective Low-mass Stars

    Get PDF
    We report the detection of stellar eclipses in the LP 661-13 system. We present the discovery and characterization of this system, including high resolution spectroscopic radial velocities and a photometric solution spanning two observing seasons. LP 661-13 is a low mass binary system with an orbital period of 4.70435120.0000010+0.00000134.7043512^{+0.0000013}_{-0.0000010} days at a distance of 24.9±1.324.9 \pm 1.3 parsecs. LP 661-13A is a 0.30795±0.000840.30795 \pm 0.00084 MM_\odot star while LP 661-13B is a 0.19400±0.000340.19400 \pm 0.00034 MM_\odot star. The radius of each component is 0.3226±0.00330.3226 \pm 0.0033 RR_\odot and 0.2174±0.00230.2174 \pm 0.0023 RR_\odot, respectively. We detect out of eclipse modulations at a period slightly shorter than the orbital period, implying that at least one of the components is not rotating synchronously. We find that each component is slightly inflated compared to stellar models, and that this cannot be reconciled through age or metallicity effects. As a nearby eclipsing binary system where both components are near or below the full-convection limit, LP 661-13 will be a valuable test of models for the structure of cool dwarf stars.Comment: 24 pages, 8 tables, 6 figures. Submitted to ApJ, comments welcom

    An Ancient Metal-Poor Population in M32, and Halo Satellite Accretion in M31, Identified by RR Lyrae Stars

    Get PDF
    We present time-series photometry of two fields near M32 using archival observations from ACS/WFC onboard HST. One field is centered about 2 arcmin from M32 while the other is located 15 arcmin to the southeast of M31. We identify a total of 1139 RR Lyrae variables of which 821 are ab-type and 318 are c-type. In the field near M32, we find a radial gradient in the density of RR Lyraes relative to the center of M32. This gradient is consistent with the surface brightness profile of M32 suggesting that a significant number of the RR Lyraes in this region belong to M32. This provides further confirmation that M32 contains an ancient stellar population formed around the same time as the oldest population in M31 and the Milky Way. The RR Lyrae stars in M32 exhibit a mean metal abundance of [Fe/H] ~ -1.42 +/- 0.02, which is ~15 times lower than the metal abundance of the overall M32 stellar population. Moreover, the abundance of RR Lyrae stars normalized to the luminosity of M32 in the field analyzed further indicates that the ancient metal-poor population in M32 represents only a very minor component of this galaxy, consistent with the 1% to 4.5% in mass inferred from the CMD analysis of Monachesi et al. In the other field, we find unprecedented evidence for two populations of RR Lyraes in M31 as shown by two distinct sequences among the ab-type variables in the Bailey Diagram. When interpreted in terms of metal abundance, one population exhibits a peak at [Fe/H] ~ -1.3 and the other is at [Fe/H] ~ -1.9. One possible interpretation of this result is that the more metal-rich population represents the dominant M31 halo, while the metal-poorer group could be a disrupted dwarf satellite galaxy orbiting M31. If true, this represents a further indication that the formation of the M31 spheroid has been significantly influenced by the merger and accretion of dwarf galaxy satellites. [abridged]Comment: 22 pages, 17 figures, accepted for publication in the MNRA

    The kinematic identification of a thick stellar disc in M31

    Full text link
    We present the first characterization of a thick disc component in the Andromeda galaxy (M31) using kinematic data from the DEIMOS multi-object spectrograph instrument on Keck II. Using 21 fields in the South West of the galaxy, we measure the lag of this component with respect to the thin disc, as well as the dispersion, metallicity and scale length of the component. We find an average lag between the two components of =46.0+/-3.9km/s. The velocity dispersion of the thick disc is sigma_{thick}=50.8+/-1.9km/s, greater than the value of dispersion we determine for the thin disc, sigma_{thin}=35.7+/-1.0km/s. The thick disc is more metal poor than the thin disc, with [Fe/H]_{spec}=-1.0+/-0.1 compared to [Fe/H]_{spec}=-0.7+/-0.05 for the thin disc. We measure a radial scale length of the thin and thick discs of h_r=7.3+/-1.0 kpc and h_r=8.0+/-1.2 kpc. From this, we infer scale heights for both discs of 1.1+/-0.2 kpc and 2.8+/-0.6 kpc, both of which are ~2--3 times larger than those observed in the Milky Way. We estimate a mass range for the thick disc component of 2.4x10^{10}Msun< M_{*,thick} <4.1x10^{10}Msun. This value provides a useful constraint on possible formation mechanisms, as any proposed method for forming a thick disc must be able to heat (or deposit) at least this amount of material.Comment: 22 pages, 17 figures. Minor revisions made to text following referee report. Accepted for publication in MNRA
    corecore