196 research outputs found

    A framework of key enabling drivers for innovation: Perceptions of community engagement scholarship of science fairs

    Get PDF
    ABSTRACT The focus of the article is to identify the main drivers for creating an innovative thinking environment, within the context of a community engagement project. Utilising reflexive practice with an analytical auto-ethnography approach, drivers of innovative thinking were identified from the field and experiences utilising existing theory in an educator, learner and community framework for driving innovation. The theoretical underpinnings of the three pillars used as the foundations for this framework were selected from literature in the people, place and process/purpose domains. Specifically, these were: Community Engagement Scholarship (people); creative Transdisciplinary Spaces (place) and Enabling Knowledge with common team vision (process/purpose). Certain pedagogical pathways were identified as critical enablers for driving innovation in this context: pedagogy, teaching strategies, mentoring, application-inquiry-based, safe spaces, critical thinking across disciplines, common vision, communication and collaboration. A framework of critical pedagogical pathways was proposed to drive creativity and innovation

    Photoassociation spectroscopy of cold calcium atoms

    Full text link
    Photoassociation spectroscopy experiments on 40Ca atoms close to the dissociation limit 4s4s 1S0 - 4s4p 1P1 are presented. The vibronic spectrum was measured for detunings of the photoassociation laser ranging from 0.6 GHz to 68 GHz with respect to the atomic resonance. In contrast to previous measurements the rotational splitting of the vibrational lines was fully resolved. Full quantum mechanical numerical simulations of the photoassociation spectrum were performed which allowed us to put constraints on the possible range of the calcium scattering length to between 50 a_0 and 300 a_0

    Structural Probe of a Glass Forming Liquid: Generalized Compressibility

    Full text link
    We introduce a new quantity to probe the glass transition. This quantity is a linear generalized compressibility which depends solely on the positions of the particles. We have performed a molecular dynamics simulation on a glass forming liquid consisting of a two component mixture of soft spheres in three dimensions. As the temperature is lowered (or as the density is increased), the generalized compressibility drops sharply at the glass transition, with the drop becoming more and more abrupt as the measurement time increases. At our longest measurement times, the drop occurs approximately at the mode coupling temperature TCT_C. The drop in the linear generalized compressibility occurs at the same temperature as the peak in the specific heat. By examining the inherent structure energy as a function of temperature, we find that our results are consistent with the kinetic view of the glass transition in which the system falls out of equilibrium. We find no size dependence and no evidence for a second order phase transition though this does not exclude the possibility of a phase transition below the observed glass transition temperature. We discuss the relation between the linear generalized compressibility and the ordinary isothermal compressibility as well as the static structure factor.Comment: 18 pages, Latex, 26 encapsulated postscript figures, revised paper is shorter, to appear in Phys. Rev.

    Resonant nonstationary amplification of polychromatic laser pulses and conical emission in an optically dense ensemble of neon metastable atoms

    Full text link
    Experimental and numerical investigation of single-beam and pump-probe interaction with a resonantly absorbing dense extended medium under strong and weak field-matter coupling is presented. Significant probe beam amplification and conical emission were observed. Under relatively weak pumping and high medium density, when the condition of strong coupling between field and resonant matter is fulfilled, the probe amplification spectrum has a form of spectral doublet. Stronger pumping leads to the appearance of a single peak of the probe beam amplification at the transition frequency. The greater probe intensity results in an asymmetrical transmission spectrum with amplification at the blue wing of the absorption line and attenuation at the red one. Under high medium density, a broad band of amplification appears. Theoretical model is based on the solution of the Maxwell-Bloch equations for a two-level system. Different types of probe transmission spectra obtained are attributed to complex dynamics of a coherent medium response to broadband polychromatic radiation of a multimode dye laser.Comment: 9 pages, 13 figures, corrected, Fig.8 was changed, to be published in Phys. Rev.

    Symmetry-breaking Effects for Polariton Condensates in Double-Well Potentials

    Get PDF
    We study the existence, stability, and dynamics of symmetric and anti-symmetric states of quasi-one-dimensional polariton condensates in double-well potentials, in the presence of nonresonant pumping and nonlinear damping. Some prototypical features of the system, such as the bifurcation of asymmetric solutions, are similar to the Hamiltonian analog of the double-well system considered in the realm of atomic condensates. Nevertheless, there are also some nontrivial differences including, e.g., the unstable nature of both the parent and the daughter branch emerging in the relevant pitchfork bifurcation for slightly larger values of atom numbers. Another interesting feature that does not appear in the atomic condensate case is that the bifurcation for attractive interactions is slightly sub-critical instead of supercritical. These conclusions of the bifurcation analysis are corroborated by direct numerical simulations examining the dynamics of the system in the unstable regime.MICINN (Spain) project FIS2008- 0484

    Single-photon Transistors Based on the Interaction of an Emitter and Surface Plasmons

    Get PDF
    A symmetrical approach is suggested (Chang DE et al. Nat Phys 3:807, 2007) to realize a single-photon transistor, where the presence (or absence) of a single incident photon in a ‘gate’ field is sufficient to allow (prevent) the propagation of a subsequent ‘signal’ photon along the nanowire, on condition that the ‘gate’ field is symmetrically incident from both sides of an emitter simultaneously. We present a scheme for single-photon transistors based on the strong emitter-surface-plasmon interaction. In this scheme, coherent absorption of an incoming ‘gate’ photon incident along a nanotip by an emitter located near the tip of the nanotip results in a state flip in the emitter, which controls the subsequent propagation of a ‘signal’ photon in a nanowire perpendicular to the axis of the nanotip

    Comparative Pharmacokinetics of Tixagevimab/Cilgavimab (AZD7442) Administered Intravenously Versus Intramuscularly in Symptomatic SARS-CoV-2 Infection

    Get PDF
    AZD7442 (Evusheld) is a combination of two human anti-severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) monoclonal antibodies (mAbs), tixagevimab (AZD8895) and cilgavimab (AZD1061). Route of administration is an important consideration to improve treatment access. We assessed pharmacokinetics (PKs) of AZD7442 absorption following 600 mg administered intramuscularly (i.m.) in the thigh compared with 300 mg intravenously (i.v.) in ambulatory adults with symptomatic COVID-19. PK analysis included 84 of 110 participants randomized to receive i.m. AZD7442 and 16 of 61 randomized to receive i.v. AZD7442. Serum was collected prior to AZD7442 administration and at 24 hours and 3, 7, and 14 days later. PK parameters were calculated using noncompartmental methods. Following 600 mg i.m., the geometric mean maximum concentration (Cmax) was 38.19 μg/mL (range: 17.30–60.80) and 37.33 μg/mL (range: 14.90–58.90) for tixagevimab and cilgavimab, respectively. Median observed time to maximum concentration (Tmax) was 7.1 and 7.0 days for tixagevimab and cilgavimab, respectively. Serum concentrations after i.m. dosing were similar to the i.v. dose (27–29 μg/mL each component) at 3 days. The area under the concentration-time curve (AUC)0–7d geometric mean ratio was 0.9 for i.m. vs. i.v. Participants with higher weight or body mass index were more likely to have lower concentrations with either route. Women appeared to have higher interparticipant variability in concentrations compared with men. The concentrations of tixagevimab and cilgavimab after administration i.m. to the thigh were similar to those achieved with i.v. after 3 days from dosing. Exposure in the i.m. group was 90% of i.v. over 7 days. Administration to the thigh can be considered to provide consistent mAb exposure and improve access

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section
    corecore