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We study the existence, stability, and dynamics of symmetric and anti-symmetric states of quasi-
one-dimensional polariton condensates in double-well potentials, in the presence of nonresonant
pumping and nonlinear damping. Some prototypical features of the system, such as the bifurcation
of asymmetric solutions, are similar to the Hamiltonian analog of the double-well system considered
in the realm of atomic condensates. Nevertheless, there are also some nontrivial differences including,
e.g., the unstable nature of both the parent and the daughter branch emerging in the relevant
pitchfork bifurcation for slightly larger values of atom numbers. Another interesting feature that
does not appear in the atomic condensate case is that the bifurcation for attractive interactions
is slightly sub-critical instead of supercritical. These conclusions of the bifurcation analysis are
corroborated by direct numerical simulations examining the dynamics of the system in the unstable
regime.

I. INTRODUCTION

Over the past few years, a novel direction in the study of Bose-Einstein condensation has captured a considerable
amount of attention. This concerns the observation of exciton-polariton Bose-Einstein condensates (BECs) in semi-
conductor microcavities [1–4]. A fundamental feature of these exciton-polariton BECs is that, upon confinement,
the excitons (bound pairs of electrons and holes) couple strongly to the incident light creating the polariton quasi-
particles [5]. The resulting exciton-polariton BEC possesses a number of remarkable properties that we briefly touch
upon below.
The radiative lifetime of the polaritons is the shorter relaxation time scale of the system being of the order of

1–10 ps [6]. On the other hand, the light mass of the exciton-polaritons provides this system with a significantly
higher condensation temperature. The photonic component of the exciton-polaritons is responsible for their short
lifetime which, in turn, does not allow thermalization; instead, it produces a non-equilibrium condensate, wherein the
presence of external pumping from an exciton reservoir is critical towards a counter-balance of the polariton loss. In
such genuinely non-equilibrium condensates, numerous remarkable features have been not only theoretically predicted
but also experimentally established; these include the flow without scattering (analog of the flow without friction) [7],
the existence of vortices [8] (see also Ref. [9] for vortex dipole dynamics and Ref. [10] for observations thereof), the
collective dynamics [11], as well as remarkable applications such as spin switches [12] and light emitting diodes [13]
operating even near room temperatures.
Perhaps the most customary approach to modeling exciton-polariton BECs involves the coupling of the evolution

of the polaritons to that of the exciton reservoir which enables their production (and which features diffusive spatial
dynamics of the excitons); this way, the model takes the form of two coupled complex Ginzburg-Landau (cGL)
equations describing the evolution of exciton and photon wavefunctions [14–16]. Nevertheless, it has been proposed
in Refs. [17–19] that a single cGL equation for the macroscopically occupied polariton state can also be used in
a way consistent with experimental observations [20]. A similar approach was followed in Ref. [21] where a BEC
of magnon quasi-particles, incorporating a source term rather than an amplification of the field, was shown to be
phenomenologically described by a system two nonlinearly coupled cGL-type equations. In the context of the single
cGL model for the polaritons, there exists a localized (pumping) region of gain and a nonlinear saturating loss
term, in addition to all the standard terms (quantum pressure, external parabolic trapping and repulsive interatomic
interaction) that one encounters in atomic BECs [22]. Furthermore, it should be pointed out that the prototypical
setting where experiments have been conducted is two-dimensional in nature. Yet, highly anisotropic traps (similar
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to what has been done in atomic BECs [22]) can be envisioned which reduce the effective dynamics to a quasi one-
dimensional (1D) setting [23–28]. Moreover, recent experimental advances have enabled the use of thin microwires
in order to guide the condensates along the direction of the wire [29]. In this setting, the recent analysis of Ref. [30]
presented a number of striking characteristics due to the interplay of gain and loss terms with the standard ones of
atomic BECs. Prominent examples included the destabilization of the nodeless state of the system and the creation
of stability inversions (where states with nodes would be more robust), as well as the existence of bubble-like and
sawtooth-like solutions in the system.
A very interesting research direction in the physics of atomic and polariton BECs concerns the dynamics of the

condensates in a double-well potential. The latter can be created in atomic BEC experiments through the combination
of a parabolic trap and a periodic (so-called optical lattice) potential generated through the interference of laser beams
illuminating the BEC [31]. Relevant experiments in atomic BECs [32, 33] have paved the way towards the exploration
of numerous features such as tunneling and Josephson oscillations for small numbers of atoms in the condensate, and
macroscopic quantum self-trapped states, as well as symmetry-breaking effects for large atom numbers. On the other
hand, double-well potentials can also be created in polariton BEC experiments in microcavities by applying stress
[2, 34], by employing photolithographic techniques [23, 24], or allowing natural formation during the sample growth
[35]. Importantly, the latter technique was used for the study of a “polariton Josephson junction” [35], in the spirit of
earlier studies on “bosonic Josephson junctions” [36] in the context of atomic BECs. Importantly, a large volume of
theoretical studies has accompanied these developments, first in the context of atomic BECs, through investigations
related to finite-mode reductions and symmetry-breaking bifurcations [37–44], quantum effects [45], and nonlinear
variants of the double-well potential [46], and more recently in the context of polariton condensates, especially as
concerns Josephson oscillations therein [47]. It should be mentioned in passing that similar (spontaneous symmetry
breaking) effects have been monitored in the realm of nonlinear optics: in this context, formation of asymmetric
states in dual-core fibers [48], self-guided laser beams in Kerr media [49], and optically-induced dual-core waveguiding
structures in photorefractive crystals [50] have been reported.
It is the aim of the present work to combine these two themes, namely the focus on the exciton-polariton BEC

with pumping and loss and the fundamental interest in the understanding of double-well trapping potentials in a
spirit similar to the proposal of Ref. [14]. In particular, we will consider the single-component model of Refs. [17–19]
combined with a double-well potential in a quasi-1D (e.g., microwire) setting. We will attempt a systematic (Galerkin)
finite-dimensional reduction of the system via projection to the two principal eigenstates of the potential, and will
derive a damped-driven system of ordinary differential equations (ODEs) that have been shown in the Hamiltonian
case to capture the essence of the statics [51] and dynamics [52] of double-well potentials. We will then examine
the bifurcation structure of the resulting ODEs and compare it to that of the original partial differential equation
(PDE) model. This already provides us with a number of interesting features that distinguish this system from
its Hamiltonian analog. For instance, in the case of attractive interatomic interactions (which is studied together
with that of repulsive interactions) the relevant symmetry-breaking pitchfork bifurcation is subcritical instead of
supercritical as in the Hamiltonian case. Furthermore, both branches that emerge from the pitchfork bifurcations, the
stable asymmetric one and the (now) unstable “parent” branch, both appear to become destabilized in this polariton
BEC setting for slightly larger nonlinearities, posing the natural question of what is the stable dynamics for larger
values of the nonlinearity. These questions will in part be addressed via direct numerical simulations.
Our presentation will be structured as follows. First, in Section II, we will present the model and its theoretical

study via the Galerkin analysis. In Section III, we will study the model numerically and compare the results of the
numerical bifurcation analysis with the prediction of the Galerkin approximation. We will also complement these
results with direct numerical simulations of the original model. Finally, in section IV, we summarize our results and
present our conclusions.

II. MODEL SETUP AND ANALYTICAL PREDICTIONS

In our analysis below, we adopt the model of Refs. [17–19]. It has been argued in these works that the original
exciton-polariton system given by a set of two coupled equations can be effectively reduced to a single cGL equation
with a nonlinear saturating loss term. This reduction can be used when the reservoir mean-field potential is negligible
and the spot size is large compared with the condensate size (i.e., if we can consider that the spot width is the same
of the spatial extent of the system). In particular, the amplification of the existing field introduces a gain and hence
acts as a generator of polaritons. Then the loss term saturates this gain beyond a certain threshold. These two terms
are analogous to the pumping of polaritons from the excitons and to the natural decay of the polaritons. This reduced
model can be expressed in dimensionless form as follows:

i∂tu = −∂2
xu+ s|u|2u+ V (x)u − µu+ i

[

χ(x) − σ|u|2
]

u. (1)
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The above model is actually a complex Ginzburg-Landau equation [53] for the complex order parameter u(x, t), which
is assumed to evolve in the presence of the effectively-1D double-well potential V (x). Equation (1) can be applied
to both the contexts of atomic and polariton BECs: in the first case, the two last terms in the right-hand side of
Eq. (1) are absent, and the model —known as the Gross-Pitaevskii equation [22]— describes the evolution of the
macroscopic wavefunction for the cold atoms and µ is the chemical potential; in the second case, u(x, t) denotes the
polariton wavefunction, and the last two terms in the right-hand side are included in the model. More specifically, in
the context of polariton condensates, Eq. (1) incorporates (a) the spatially dependent gain term of the form

χ(x) = αΘ(xm − |x|), (2)

where Θ is the step function generating a symmetric pumping spot of “radius” xm and strength α for the gain, and
(b) a nonlinear saturation loss term, characterized by its strength σ. As concerns the parameter s ≡ ±1, it sets
the type of nonlinearity (i.e., the type of interactions between atoms or polaritons): for s = +1 the nonlinearity is
defocusing (i.e., the interactions are repulsive), while for s = −1 the nonlinearity is focusing (i.e., the interactions are
attractive). In the context of atomic BECs, the value of s depends on the atom species (e.g., s = +1 for 87Rb or 23Na,
while s = −1 for 7Li or 85Rb atoms). On the other hand, in the context of polariton condensates, the sign of the
effective mass of polaritons [i.e., the sign of the first term in the right-hand side of Eq. (1)] may become either positive
or negative, depending on the values of transverse momentum: in fact, the transition from positive to negative mass
is associated with the inflection point of the energy-momentum diagram [54]. Here, we will consider both cases of
s = ±1 to take into regard that the effective polariton mass may be positive or negative, respectively. We finally
note that the relevant physical time and space scales, as well as physically relevant parameter values associated with
Eq. (1), can be found in Ref. [17].
In what follows, we will use the Galerkin (few mode truncation) approach of Ref. [44]. We start by considering the

corresponding linear eigenproblem which reads:

Hu ≡ −∂2
xu+ V (x)u = ωu, (3)

whose spectrum consists of a ground state, u0(x), and excited states, ui(x) (with i ≥ 1). Then, in the weakly nonlinear
regime, we consider a superposition of the two lowest linear eigenmodes,

u(x, t) = c0(t)u0(x) + c1(t)u1(x), (4)

where c0,1(t) are unknown time-dependent complex prefactors; obviously, the above ansatz is relevant for values of
the chemical potential µ such that higher order modes can be safely ignored. Substituting this ansatz into Eq. (1) we
obtain:

i (ċ0u0 + ċ1u1) = (ω0 − µ)u0c0 + (ω1 − µ)u1c1 + s|u|2 (c0u0 + c1u1) + i
[

χ(x)− σ|u|2
]

(c0u0 + c1u1) , (5)

where the |u|2 has not been expanded only for reasons of compactness but should actually be thought as expanded
according to Eq. (4). Next, projecting on u0 and u1 (i.e., multiplying the above equation by u0 and u1 and integrating
over x), and using the orthogonality of the states ui, we respectively derive the following equations:

iċ0 = (ω0 − µ+ iα0)c0 + (s− iσ)
{

A0|c0|
2c0 +

(

c20c
∗

1 + 2|c0|
2c1

)

Γ0 +
(

2|c1|
2c0 + c21c

∗

0

)

B + |c1|
2c1Γ1

}

, (6)

and

iċ1 = (ω1 − µ+ iα1)c1 + (s− iσ)
{

Γ0|c0|
2c0 +

(

c20c
∗

1 + 2|c0|
2c1

)

B +
(

2|c1|
2c0 + c21c

∗

0

)

Γ1 + |c1|
2c1A1

}

. (7)

In the above equations, overdots denote time derivatives, the involved constants (depending on the eigenbasis {ui})
take the values A0 =

∫

u4
0dx, A1 =

∫

u4
1dx, B =

∫

u2
0u

2
1dx, Γ0 =

∫

u1u
3
0dx, and Γ1 =

∫

u0u
3
1dx, while the effective

gain coefficients read: α0 =
∫

χ(x)u2
0dx and α1 =

∫

χ(x)u2
1dx. We now use amplitude and phase variables for the

time-dependent prefactors, i.e., ci = ρie
iφi (with the amplitudes ρi and phases φi being real functions), to derive a

set of four equations for the unknown functions ρ0,1 and φ0,1. Introducing the relative phase of the first two modes
as ϕ ≡ φ1 − φ0, the above mentioned set of equations takes the following form:

ρ̇0 =α0ρ0 − σ
(

A0ρ
3
0 + 2Bρ21ρ0

)

+ s
(

Γ1ρ
3
1 + Γ0ρ

2
0ρ1

)

sinϕ

+ sBρ21ρ0 sin 2ϕ− σ
(

Γ1ρ
3
1 + 3Γ0ρ

2
0ρ1

)

cosϕ− σBρ21ρ0 cos 2ϕ,
(8)

φ̇0 =− (ω0 − µ)− s
(

A0ρ
2
0 + 2Bρ21

)

− σ
(

Γ0ρ0ρ1 + Γ1ρ
3
1/ρ0

)

sinϕ

− σBρ21 sin 2ϕ− s
(

3Γ0ρ0ρ1 + Γ1ρ
3
1/ρ0

)

cosϕ− sBρ21 cos 2ϕ,
(9)
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ρ̇1 =α1ρ1 − σ
(

A1ρ
3
1 + 2Bρ20ρ1

)

− s
(

Γ0ρ
3
0 + Γ1ρ

2
1ρ0

)

sinϕ

− sBρ20ρ1 sin 2ϕ− σ
(

Γ0ρ
3
0 + 3Γ1ρ

2
1ρ0

)

cosϕ− σBρ20ρ1 cos 2ϕ,
(10)

and

φ̇1 =− (ω1 − µ)− s
(

A1ρ
2
1 + 2Bρ20

)

+ σ
(

Γ1ρ1ρ0 + Γ0ρ
3
0/ρ1

)

sinϕ

+ σBρ20 sin 2ϕ− s
(

3Γ1ρ1ρ0 + Γ0ρ
3
0/ρ1

)

cosϕ− sBρ20 cos 2ϕ.
(11)

Subtracting Eq. (9) from Eq. (11), we can readily obtain an equation for ϕ, namely:

ϕ̇ =−∆ω − s
(

A1ρ
2
1 − A0ρ

2
0

)

− sB [2 + cos 2ϕ]
(

ρ20 − ρ21
)

− s
cosϕ

ρ0ρ1

(

Γ0ρ
2
0(ρ

2
0 − 3ρ21) + Γ1ρ

2
1(3ρ

2
0 − ρ21)

)

+ σ
sinϕ

ρ0ρ1

(

Γ0ρ
2
0(ρ

2
0 + ρ21) + Γ1ρ

2
1(ρ

2
0 + ρ21)

)

+ σB sin 2ϕ(ρ20 + ρ21),
(12)

where ∆ω ≡ ω1 − ω2. This way, we have arrived to a system of three equations [cf. Eqs. (8), (10) and (12)] for the
unknown functions ρ0,1 and ϕ. These equations are subject to an additional constraint stemming from the balance

condition dN/dt = 0, where N ≡
∫ +∞

−∞
|u|2dx is the number of polaritons (mathematically the squared L2 norm). The

evolution of the latter, can readily be found by multiplying Eq. (1) by u∗, the complex conjugate of Eq. (1) by u, and
then adding and integrating the resulting equations. It is straightforward to find that the condition for equilibrium
is:

∫ +∞

−∞

(

χ(x) − σ|u|2
)

|u|2dx = 0. (13)

Substituting Eq. (4) into Eq. (13), also using the polar decomposition for ci(t) [and assuming a definite —even in our
considerations— parity for the function χ(x)], we find that the balance condition (13) takes the form:

(

α0ρ
2
0 + α1ρ

2
1

)

− σ
(

A0ρ
4
0 + ρ41A1 + 4ρ20ρ

2
1B

)

− 4σ
(

ρ30ρ1Γ0 + ρ31ρ0Γ1

)

cosϕ− 2σρ20ρ
2
1B cos 2ϕ = 0, (14)

which essentially fixes ρ1 once ρ0 and ϕ are found and thus reducing the effective number of degrees of freedom for
our approximations to only two (ρ0 and ϕ).
Below, we will consider the case of a symmetric double-well potential, for which Γ1 = Γ0 = 0. In this case, Eqs. (8),

(10) and (12) are reduced to the following simpler form,

ρ̇0 = α0ρ0 − σ
(

A0ρ
3
0 + 2Bρ21ρ0

)

+ sBρ21ρ0 sin 2ϕ− σBρ21ρ0 cos 2ϕ, (15)

ρ̇1 = α1ρ1 − σ
(

A1ρ
3
1 + 2Bρ20ρ1

)

− sBρ20ρ1 sin 2ϕ− σBρ20ρ1 cos 2ϕ, (16)

ϕ̇ = −∆ω − s
(

A1ρ
2
1 −A0ρ

2
0

)

− sB [2 + cos 2ϕ]
(

ρ20 − ρ21
)

+ σB sin 2ϕ(ρ20 + ρ21), (17)

while the equilibrium condition is accordingly simplified as:

(

α0ρ
2
0 + α1ρ

2
1

)

− σ
(

A0ρ
4
0 + ρ41A1 + 4ρ20ρ

2
1B

)

− 2σρ20ρ
2
1B cos 2ϕ = 0. (18)

We can now turn to the study of stationary solutions (i.e., ρ̇0 = ρ̇1 = ϕ̇ = 0) resulting from the Galerkin truncation
analysis. Particularly, from Eq. (15) we obtain two possible solutions:

{

i) ρ0 = 0,

ii) α0 − σ
(

A0ρ
2
0 + 2Bρ21

)

+ sBρ21 sin 2ϕ− σBρ21 cos 2ϕ = 0,
(19)

while from Eq. (16) we obtain:

{

i) ρ1 = 0

ii) α1 − σ
(

A1ρ
2
1 + 2Bρ20

)

− sBρ20 sin 2ϕ− σBρ20 cos 2ϕ = 0.
(20)
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Next, multiplying the nontrivial equilibria of Eq. (19) by ρ20, the one from Eq. (20) by ρ21, and adding the resulting
equations, we obtain:

cos 2ϕ =
(α0ρ

2
0 + α1ρ

2
1)− σ

(

A0ρ
4
0 +A1ρ

4
1 + 4Bρ20ρ

2
1

)

2σBρ20ρ
2
1

, (21)

while subtracting Eq. (20) from Eq. (19) yields:

σ
(

A1ρ
4
1 −A0ρ

4
0 + 2B(ρ20 − ρ21) +B(ρ20 − ρ21) cos 2ϕ

)

+ sB(ρ20 + ρ21) sin 2ϕ+ (α0 − α1) = 0. (22)

Combining now Eq. (22) with Eq. (17) we finally obtain the result:

(ρ20 + ρ21) sin 2ϕ =
σ∆ω − s(α0 − α1)

B(σ2 + s2)
. (23)

Let us now focus again on Eqs. (15) and (16): it is clear that if Eq. (16) is satisfied for ρ1 = 0 then ρ20 = α0

σA0

, and if

Eq. (15) is satisfied with ρ0 = 0 then ρ21 = α1

σA1

. Aside from these trivial symmetric and anti-symmetric solutions, past
the critical point for the symmetry breaking bifurcation, an asymmetric solution is expected to exist which possesses
non-vanishing ρ0 and ρ1 (as well as a non-zero relative phase between them), which can be computed from Eq. (21).
It is anticipated that the presence of loss and gain will not (generically) modify the nature of the bifurcations in
comparison to the Hamiltonian case [44]. Namely, an asymmetric solution will bifurcate from the symmetric one
in the focusing nonlinearity case of s = −1, due to a non-vanishing contribution of the anti-symmetric part in the
solution, while on the contrary, an asymmetric mode will emanate from the anti-symmetric one in the defocusing
nonlinearity setting of s = 1 (due to a symmetric contribution within the solution). These results are detailed for a
particular case example potential in what follows and compared to full numerical results.

III. NUMERICAL RESULTS

In our theoretical approximations, the double-well potential is constructed by placing a localized barrier at the
center of the parabolic trap potential of strength Ω. Particularly, the double-well potential is assumed to be of the
form:

V (x) =
1

2
Ω2x2 + V0 sech

( x

w

)

, (24)

where w is the width of the barrier and V0 its height. The results presented below are for the potential parameters
Ω2 = 0.1, V0 = 5, and w = 0.2; we have checked that other parameter values lead to quantitatively similar results .
For the gain we consider a strength α = 0.2 and a spot size of xm = 2.0. The damping parameter σ is used to vary
the number of atoms, N , in order to do the continuation. For the above double-well potential, the values of the linear
eigen-energies are ω0 = 0.515729 and ω1 = 0.677697. The potential setting under consideration is depicted in Fig. 1.
We have performed a continuation of symmetric, anti-symmetric and asymmetric states in both cases of repulsive

and attractive interactions. The continuations have been performed by increasing the damping parameter σ, which
is tantamount to decreasing the norm or chemical potential. It is important to note that the chemical potential is no
longer a free parameter in the present setting in sharp contrast to what is the case in the Hamiltonian regime of atomic
BECs (see also the discussion of Refs. [17, 30]). Similar results can be obtained by decreasing the pumping parameter
α. However, a crucial realization that emerges from considering variations of the different parameters is that the spot
size xm must be chosen in a very limited range in order for the three above mentioned nonlinear modes to co-exist
and be potentially stable; outside this range, instabilities lead to breathing multi-bump coherent structures. In what
follows, the values of xm = 2 and α = 0.2 have been used unless explicitly indicated otherwise.

A. Repulsive case

We start by considering the case of the repulsive interaction with s = +1 (and vary σ as mentioned above). The
family of symmetric solutions is found to be always stable. As expected, on the other hand, and in agreement to
our expectation from the realm of atomic BECs, the anti-symmetric solutions are exponentially unstable for small
σ, which is tantamount to large polariton population numbers N . They become stable after the symmetry-breaking
pitchfork bifurcation occurring at σ = 1.045 (i.e., for µ < µcr = 0.7574 and for N < Ncr = 0.5333). The asymmetric
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FIG. 1: (Color online) The parabolic trapping potential and the localized barrier creating the double-well potential configuration.
The parameter values used are: Ω2 = 0.1, w = 0.2, and V0 = 5; the shaded area corresponds to the region where the pumping
acts, i.e., |x| < xm = 2.
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FIG. 2: (Color online) Bifurcation diagrams for the symmetric, anti-symmetric and asymmetric branches for defocusing (re-
pulsive) nonlinearity (s = 1). Left: Dependence of the chemical potential on the damping parameter. Right: Dependence of
the (normalized) number of polaritons on the chemical potential. Unstable solutions are depicted by dashed lines on the left
panel. On the right solid lines display numerical results obtained by a nonlinear (Newton-Raphson) solver of the steady state
equations of the model of Eq. (1), while dashed lines display analytical results of our Galerkin approach. The linear modes are
located at µ = 0.5157 and µ = 0.6667.

branch that emerges through this bifurcation is stable for µ < 0.7603 and N < 0.5509, i.e., for a narrow parametric
interval past the bifurcation critical point. However, past this secondary critical point, the asymmetric solutions are
prone towards an oscillatory instability emerging through a Hopf bifurcation (the critical loss strength in this case
is σ = 0.989). The relevant bifurcation diagrams are presented in Fig. 2, which shows the dependence of µ on σ,
as well as the dependence of N on µ (note that the latter form of the bifurcation diagram is more commonly used
in relevant studies). The latter graph also contains the results of the theoretical analysis for the symmetric branch
of Eq. (20) and for the anti-symmetric one of Eq. (19), as well as for the asymmetric branch which is theoretically
predicted for the parameters of our double-well potential to bifurcate from the anti-symmetric solution for µ > 0.7722
and N > 0.6661. As can be seen (also from Fig. 2), there is good agreement between theoretical predictions and
numerical findings.
Some case examples of solution profiles for the different branches, together with the results of their corresponding
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FIG. 3: (Color online) (Left) Real and imaginary part of the wavefunction profile for a symmetric (top) and anti-symmetric
(bottom) solution. (Right) Their corresponding stability eigenvalues. In all cases σ = 1 and the interactions are repulsive
(s = +1).
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FIG. 4: (Color online) (Left) Real and imaginary part of the wavefunction profile for an asymmetric solution with σ = 0.5.
(Right) Their corresponding stability eigenvalues. All cases correspond to the repulsive interaction case (s = +1).
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(left) and asymmetric solutions (right) in the repulsive interaction case (s = +1).
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FIG. 6: (Color online) Top: Evolution of a perturbed anti-symmetric soliton for σ = 1 (left) and σ = 0.8 (right) in the repulsive
case (s = +1). The former case relaxes to the asymmetric stationary state, while the latter to the symmetric ground state.
Bottom: Respective time series for the density at the bottom of the left (solid blue line) and right (dashed red line) wells.

linear stability analysis as performed by means of the Bogolyubov-de Gennes (BdG) ansatz [22] are shown in Figs. 3
and 4, The BdG analysis is represented by the spectral plane of the linearization eigenfrequencies ω = Re(ω)+ iIm(ω).
Contrary to what is the case in the Hamiltonian setting of Ref. [44] (where the spectrum is chiefly on the imaginary
axis), here the spectrum contains predominantly decaying modes with Im(ω) < 0. For the stable symmetric ground
state in Fig. 3, all modes are decaying except for the symmetry mode associated with ω = 0, while for the unstable
anti-symmetric mode of the bottom panel the eigenfrequency associated with the growth is purely imaginary with
Im(ω) > 0. On the other hand, for the asymmetric modes of Fig. 4, it is evident that shortly past the critical point
for their emergence, a genuine (now that the system is dissipative, in nature) Hopf bifurcation arises through the
crossing of a complex conjugate pair through the axis of Im(ω) = 0. Additional Hopf bifurcations happen for smaller
values of σ (larger values of N), a case example of which is evident in the bottom panel of Fig. 4. The dependence
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FIG. 7: (Color online) Top: Evolution of a perturbed asymmetric soliton with σ = 0.8 (left) and σ = 0.98 (right) in the
repulsive case (s = +1). In the former case, perturbation leads to the symmetric ground state attractor, while in the latter
case, it relaxes to a non-stationary (quasi-periodic) solution. Bottom: Respective time series for the density at the bottom of
the left (solid blue line) and right (dashed red line) wells.
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FIG. 8: (Color online) Bifurcation diagrams for the symmetric, anti-symmetric and asymmetric branches for focusing (attrac-
tive) nonlinearity (s = −1). Left: Dependence of the chemical potential on the damping parameter. Right: Dependence of the
(normalized) number of polaritons on the chemical potential. Unstable solutions are depicted by dashed lines on the left panel.
On the right panel solid lines display numerical (Newton-Raphson) results, while dashed lines display analytical (Galerkin)
results.

of the imaginary part of the relevant eigenvalues for the anti-symmetric and asymmetric solutions with respect to σ
is shown in Fig. 5, illustrating, respectively, the relevant pitchfork (left panel) and multiple Hopf bifurcations (right
panel). Naturally, the Hopf bifurcation of the asymmetric branch is anticipated to give rise to a limit cycle attractor
within the dynamics [the relevant solution is expected to be periodic in the squared modulus of the wavefunction,
hence quasi-periodic in the original field u(x, t)].
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FIG. 9: (Color online) (Left) Real and imaginary part of the wavefunction profile for a symmetric (top) and anti-symmetric
(bottom) solution. (Right) Their corresponding stability eigenvalues. In all cases σ = 1 and the nonlinearity is attractive
(s = −1).

Two examples of the dynamics of unstable anti-symmetric solutions are illustrated in Fig. 6. It is observed that the
unstable solutions generically tend to the stable attractors. However, interestingly, in the σ = 1 case, the attractor
of relevance consists of an asymmetric steady state, while in the σ = 0.8 case it consists of a symmetric one (the
ground state of the system). The symmetry and asymmetry of the configurations can be easily seen from the time
series of the densities |u|2

−
and |u|2+ measured, respectively, at the bottom of the left and right wells. These time series

are depicted in the lower panels of the figure. The relevance of the asymmetric attractor, especially for larger values
of N (smaller values of σ, where the only stable steady state is the symmetric one) is confirmed by the simulation
shown in the left panel of Fig. 7, where the dynamics of an unstable asymmetric solution is traced, leading indeed
to the same attractor. The right panel of Fig. 7 shows the evolution of a perturbed asymmetric state close to the
Hopf bifurcation; in that case, it is observed that the soliton relaxes to a quasi-periodic asymmetric solution. [Recall
that these solutions have a quasi-periodic evolution for the wavefunction (due to the periodic evolution of the phase
through e−iµt) but the evolution in density is periodic as the panels show]. That quasi-periodic branch is observed to
exist in the range σ ∈ [0.970, 0.990].

B. Attractive case

In the case of attractive interactions (s = −1), the scenario is similar in nature, except for the origin of the symmetry
breaking bifurcation. More specifically, now, the asymmetric solutions, which stabilizes at σ = 0.923 (µ = 0.4182 and
N = 0.7199), bifurcates from the symmetric solutions branch at σ = 1.118 (µ = 0.4101 and N = 0.7741). Figures 8
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FIG. 10: (Color online) (Left) Real and imaginary part of the wavefunction profile for an asymmetric solution with σ = 1
(top) and σ = 0.7 (bottom). (Right) Their corresponding stability eigenvalues. Notice the Hopf bifurcations and the associated
oscillatory instabilities through two complex pairs which have occurred in the latter case. Here, the nonlinearity is attractive
(s = −1).
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FIG. 11: (Color online) Dependence of the imaginary part of the stability eigenvalues with respect to σ for symmetric (left)
and asymmetric solutions (right). Here, again, the nonlinearity is attractive (s = −1).
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FIG. 12: (Color online) Top: Evolution of perturbed symmetric solitons with σ = 1 (left) and σ = 0.82 (right) for attractive
nonlinearity (s = −1). Bottom: Respective time series for the density at the bottom of the left (solid blue line) and right
(dashed red line) wells.
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FIG. 13: (Color online) Top: Dynamical evolution of the density of the non-stationary asymmetric solution branch found for
attractive nonlinearity (s = −1) in two cases: σ = 0.9 (left) and σ = 0.8 (right). Bottom: Respective time series for the density
at the bottom of the left (solid blue line) and right (dashed red line) wells.
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and 11 are the equivalent to Figs. 2 and 5, respectively, but for s = −1. Nevertheless, we observe that both the
dependence of the chemical potential µ on the nonlinear saturation parameter σ and that of N on µ is, in fact,
non-monotonic for this example in the case of the bifurcating asymmetric branch. This clearly indicates (see the
right panel of Fig. 8) that the relevant bifurcation is subcritical (as the chemical potential µ is decreased, which is the
natural direction of variation off of the linear limit). This is contrary to the corresponding supercritical expectation of
its Hamiltonian analog [44, 51]. It should be noticed, however, that other examples where such subcritical bifurcations
have been previously reported in Refs. [55, 56] although in neither case was the nonlinearity purely cubic as was the
case here (and they did not contain driving/damping effects). Importantly, it should also be pointed out that the
analytical prediction of the Galerkin approach suggests a supercritical scenario for µ < 0.4247 and N > 0.6590.
Despite the inability of the approximation to capture the short subcritical segment of the bifurcating branch, we
nevertheless see that the Galerkin method is a useful tool for obtaining an estimate of the relevant critical point.
An additional feature worth pointing out concerns the nature of the instabilities of the different branches as detailed

in Figs. 9 and 10. While the symmetric branch becomes unstable at the relevant critical point by developing an
imaginary eigenfrequency with Im(ω) > 0 (the rest of the spectrum has Im(ω) < 0), the anti-symmetric state remains
dynamically robust. On the other hand, the asymmetric branch emerges as stable at the critical point of the symmetry
breaking but shortly thereafter (for σ < 0.923), it becomes subject to a Hopf bifurcation through the crossing of the
axis with Im(ω) = 0 of a complex eigenvalue pair. In fact, for σ < 0.74, a secondary Hopf bifurcation has occurred
and is mirrored in the two complex pairs with Im(ω) > 0 shown in Fig. 10. This phenomenology is enforced by
Fig. 11 which illustrates the dependence of the relevant stability eigenvalues on the nonlinear loss parameter σ (see
the right panel for the sequence of Hopf bifurcations, while the left panel highlights the symmetry-breaking induced
crossing of a single eigenfrequency pair for the symmetric branch). As in the repulsive case, the Hopf bifurcation of
the asymmetric branch is anticipated to give rise to a limit cycle attractor within the dynamics.
The dynamics of Figs. 12 and 13 naturally reflects the above conclusions. In particular, the evolution of the

symmetric state in the double-well potential of the left panel of Fig. 12 gives rise to the asymmetric state as the
latter is stable and indeed an attractor for the value of σ = 1. The right panel of the figure displays the evolution of
a perturbed symmetric solution tending to an anti-symmetric one; in that case, the asymmetric solution is unstable
and no longer a dynamical attractor.
On the other hand, Fig. 13 shows different case examples of the (unstable via the Hopf) asymmetric branch for

different values of σ. In those cases, the asymmetric branch is no longer a stable stationary state and as a result the
dynamics becomes periodic in the modulus (quasi-periodic in the original field) for σ ∈ [0.74, 0.92]. It is interesting
to follow the changes in the dynamics for these periodic states as σ is decreased below the bifurcating point from
the asymmetric branch. In particular, close to bifurcation point, the periodic evolution remains proximal to the state
from which it emanates, namely the asymmetric state as it can be seen in the left panels of Fig. 13. However, as σ
is decreased further from the bifurcation point, the instability of the asymmetric state is stronger and the departure
from the asymmetric solution is more significant. In particular, it is interesting to notice that for smaller values of σ,
the solution tends to display strong oscillations of the densities resembling the symmetric tunneling of matter from
one well to the other. An example of this evolution for σ = 0.8 is depicted in the right panels of Fig. 13 where it
is evident that the oscillations in the two wells become similar to each other but with a phase shift between them,
leading to an effective re-symmetrization of the dynamics.
It is also interesting to highlight here the difference between the repulsive case of Figs. 6 and 7 and the attractive

case of Figs. 12 and 13. In the former case, when the emerging asymmetric branch is unstable the dynamics typically
is found to lead to the stable ground state of the system (the symmetric one). On the other hand, for the attractive
case, when both the symmetric and the asymmetric branch are destabilized, the dynamics does not resort to the
excited (yet stable) anti-symmetric state. Instead, it leads to periodic oscillations in the density between the two
wells.
Finally, we have considered the effect of varying the spot size fixing σ = 1. In the repulsive case, the symmetric

branch is stable for xm ∈ [0.9, 5.7]; out of this range, the instabilities are caused by a Hopf bifurcation cascade
and develop into non-stationary multi-dark soliton waveforms, similar to the states that were previously reported
in Ref. [30] (but for a purely parabolic trap). The anti-symmetric branch, which is unstable for every xm (for this
value of σ), experiences a bifurcation cascade for xm ≤ 2.0 and xm ≥ 5.3. The instabilities at xm ∈ (2.0, 5.3) are
the exponential ones previously explored. However, considering higher values of σ, a stability range appears which is
enlarged for growing σ. A similar effect is observed for the asymmetric branch, i.e., there is a small stability interval
xm ∈ [1.9, 2.0] that is enlarged when σ is decreased. Outside this range, the branch experiences Hopf bifurcation
cascades.
The above mentioned scenario is almost equivalent for the attractive case, except that the symmetric and anti-

symmetric branches are interchanged. In that case, the anti-symmetric branch is stable for xm ∈ [2.0, 4.8]; the
symmetric branch is now stable for xm ∈ [1.0, 1.9], starting the Hopf cascade at xm = 4.5. The asymmetric branch is
stable for xm ∈ [1.0, 2.0], while being oscillatorily unstable for other values of xm.
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IV. CONCLUSIONS AND FUTURE CHALLENGES

In the present work, we studied the existence of solutions, their spectral stability and nonlinear dynamics for the
case of a polariton condensate confined in a quasi-1D double well potential. Motivated by recent developments for
the study of polaritons in such settings [23–29, 47], and by the work of Ref. [14] which proposed a two-well model, we
presented a systematic Galerkin analysis for the model with the gain over a localized spot and nonlinear saturation
loss formulated in Refs. [17–19]. It was theoretically predicted that nonlinear states emanate from the corresponding
linear ones of the potential and that bifurcations are expected to arise, similarly to the Hamiltonian analog of this
setting studied earlier in the context of atomic BECs. Such symmetry breaking pitchfork events emerge from the
anti-symmetric, first excited state in the case of the repulsive interactions, while they arise from the symmetric ground
state branch in the case of attractive ones. Despite the similarities with the atomic BEC case, nontrivial differences
exist as well. One of them concerns the nature of the bifurcation, which in the attractive case was found to be
weakly subcritical (instead of supercritical) upon decrease of the chemical potential. Importantly also, the resulting
asymmetric branches aside from narrow intervals of stability are generically found to be unstable due to genuine Hopf
bifurcations, which, in turn, give rise to periodic orbits (in the density). While in the repulsive case, the dynamics of
anti-symmetric and asymmetric branches is found to be attracted to the ground state when both of them are unstable,
the periodic orbits are essential to the evolution in the case of attractive interactions as they seem to constitute the
robust dynamical attractor.
This is merely the first step in the examination of the similarities (but also the differences) of the polariton BECs

and their atomic counterparts within a setting that contains the interplay of a double-well potential and nonlinear
interactions. Yet, our study paves the way for a number of potential future avenues. On the one hand, one can consider
the more detailed model of Refs. [14–16] and examine whether the inclusion of the diffusive dynamics of the exciton
population induces any qualitative differences in the features reported herein. On the other hand, and bearing in mind
the predominantly two-dimensional nature of the polariton dynamics, one can envision generalizations of the potential
considered herein in a 2D realm. Relevant possibilities may include not only the straightforward generalization of
a double well encompassing two quasi-one-dimensional tracks, but also that of a genuinely two-dimensional four
well potential that has recently been examined in detail in atomic BECs [57]. Even in the context of the present
model, there are further possibilities to explore, including the systematic investigation of the emergent periodic orbits
and their Floquet spectral stability analysis. Such studies are currently in progress and will be reported in future
publications.
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