36 research outputs found

    Effects of CO2 and temperature on Eucalyptus insect herbivores from individuals to communities

    Get PDF
    Atmospheric CO2 concentrations and temperatures are predicted to increase dramatically during this century. Changes in these environmental factors may impact insect herbivore physiology, abundance and community structure. In general, elevated CO2 (CE) reduces foliar nitrogen concentrations while increasing the carbon to nitrogen ratio. These changes in foliar chemistry often result in slower development and increased mortality of insect herbivores. Elevated temperatures (TE) can directly accelerate the development of insects by increasing their metabolic rates. TE may also indirectly impact insect herbivores through plant-mediated effects. CE and TE may have opposing or interactive effects on insect herbivores, so it is important to understand how concurrent changes to these two climate change factors impact herbivorous insects. Further to this, the impact of CE on insect herbivores and insect-mediated processes (such as herbivory and nutrient transfer) is rarely quantified in mature forests. Field sites present the opportunity to understand how insects in complex environments respond to CE under conditions that are difficult to simulate in greenhouse environments. The main and interactive effects of CE and TE were examined for an insect herbivore feeding on two different Eucalyptus species (chapter 2). Paropsis atomaria (Coleoptera: Chrysomelidae) fed on the flush leaves of either Eucalyptus tereticornis or Eucalyptus robusta in a greenhouse. CE reduced the nutritional quality of both Eucalyptus species, while TE increased foliar concentration of nitrogen in E. robusta only. Larval developmental time and leaf consumption increased while female pupal weight decreased at CE via plant-mediated effects. Larval survival increased at CE on E. robusta but decreased on E. tereticornis. TE only accelerated larval developmental time. No interactive effects between CE and TE were observed in this study indicating CE is a stronger driver of changes in insect growth and survival via plant-mediated effects than TE under the experimental conditions in this study. As an extension to examining the effects of CE and TE on the growth and development of an insect herbivore, the immune response of P. atomaria was also assessed when it was feeding on E. tereticornis under CE and TE conditions (chapter 3). The cellular (melanisation) and humoral (phenoloxidase or PO activity) components of the insect’s immune response to the implantation of a nylon filament was assessed and linked to changes in leaf chemistry. Haemolymph protein content and PO activity decreased at CE, however, the melanisation response increased at CE. TE had no effect on any immune parameters. Complex interactions of immune responses such as these occurring at CE may alter the outcomes of parasitoid or pathogen attack. Based on results obtained from these greenhouse studies (chapter 2 and 3), two field experiments were undertaken within a mature Eucalyptus woodland undergoing CO2 fumigation to investigate the effect of CE on herbivory and insect-mediated nutrient transfer. The impact of CE on insect-mediated nutrient cycling over two years at the Eucalyptus free-air enrichment (EucFACE) site is reported in chapter 4. CE did not impact the quantity or chemical composition of frass deposited at the site nor did it affect foliar nitrogen. Frass deposition showed a positive-lagged correlation with precipitation and average maximum temperatures likely linked to leaf phenology. CE may have a limited effect on insect-mediated nutrient cycling of mature forests in the short-term as the response of mature trees to CE may be lagged. The effect of CE on herbivory at the EucFACE site, and the role of leaf phenology on herbivory are reported in chapter 5. Young expanding leaves sustained significantly greater damage compared to fully-expanded or mature leaves. Thus, the availability of young expanding leaves drove monthly variations in leaf consumption. CE had no effect on leaf consumption or leaf age preference by herbivorous insects. Leaf phenology may be a significant factor in determining insect herbivory in sclerophyllous forests. Alterations in leaf phenology as a result of climate change may negatively impact insect herbivores particularly if insect phenology is synchronised with leaf phenology. The results of this Ph.D. research contribute to the understanding of (a) the main and interactive effects of CE and TE on the growth, development and immunity of insect herbivores; (b) the role of host-plant species in altering the response of insect herbivores to CE and TE; (c) the impact of CE on insect-mediated forest nutrient cycling and the interaction with rainfall and temperature; (d) the influence of leaf phenology and CE on leaf consumption. This work provides important information for the predictions of insect responses to CE and TE and this information is essential for the modelling of ecosystem responses. Results obtained from greenhouse studies in this thesis indicate insect herbivores may find refuge from the negative effects of CE in some growth, development and immunity traits particularly if they inhabit mixed-species forests. Furthermore, strong effects of CE on individuals of an important insect herbivore species of the EucFACE site in greenhouse experiments were not confirmed at herbivore community scales in the field due to complex interactions which may be unique to mature nutrient-limited forests

    Carbon-phosphorus cycle models overestimate CO2 enrichment response in a mature Eucalyptus forest.

    Get PDF
    The importance of phosphorus (P) in regulating ecosystem responses to climate change has fostered P-cycle implementation in land surface models, but their CO2 effects predictions have not been evaluated against measurements. Here, we perform a data-driven model evaluation where simulations of eight widely used P-enabled models were confronted with observations from a long-term free-air CO2 enrichment experiment in a mature, P-limited Eucalyptus forest. We show that most models predicted the correct sign and magnitude of the CO2 effect on ecosystem carbon (C) sequestration, but they generally overestimated the effects on plant C uptake and growth. We identify leaf-to-canopy scaling of photosynthesis, plant tissue stoichiometry, plant belowground C allocation, and the subsequent consequences for plant-microbial interaction as key areas in which models of ecosystem C-P interaction can be improved. Together, this data-model intercomparison reveals data-driven insights into the performance and functionality of P-enabled models and adds to the existing evidence that the global CO2-driven carbon sink is overestimated by models

    Forest invertebrate communities and atmospheric change

    No full text
    Predicting the responses of invertebrate species, and the communities they form, to global change is one of the great challenges facing modern ecology. Invertebrates play vitally important roles in forests, underpinning fundamental ecosystem processes like nutrient cycling and pollination. Changes in the composition of our atmosphere, associated with increased levels of carbon dioxide (CO2) and ozone (O3), have the potential to affect the abundance, diversity and structure of invertebrate communities and the ecosystems they support. This chapter reviews the findings from the body of work looking at the responses of invertebrates to changes inCO2 and O3 concentrations with a special focus on the results from Free-Air Enrichment studies. The most consistent finding across the studies we review is the idiosyncratic nature of the responses of invertebrate species to the elevation of CO2 and/or O3. This finding can be explained to some extent by bottom-up and top-down processes. These include the species- and genotype-specific responses of host plant chemistry and differences in the abilities of individual insect species to physiologically and behaviourally overcome changes in resource quality. Although evidence is clearly mixed, certain general conclusions can be made regarding the influence of CO2 and/or O3 on invertebrates. Forest invertebrate herbivores tend to respond negatively to elevated concentrations of CO2. This response is likely due to diminished food-plant quality. Conversely, predators and parasitoids may benefit under enriched-CO2 conditions as prey susceptibility increases. Elevated O3 concentrations generally have opposing effects: herbivores show a tendency to consume more and develop faster while higher trophic levels experience declines in performance. Therefore, simultaneous elevation of both gases, such as is found in reality, may moderate the effects of either gas in isolation. There also appears to be some capacity for invertebrate communities to rebound over time, as evidenced by long-term studies. From the few community-level studies available, the current conclusion is that the structure of invertebrate communities will not be strongly disrupted by increases in CO2 and O3. This suggests that the ecosystem processes underpinned by these communities may be maintained under future atmospheres in these systems, though more work is needed. Looking forward, we emphasize the critical need for long-term studies of invertebrate responses at the population and community-level within natural systems. Such studies will be particularly important in tropical regions where no such information currently exists. Studies incorporating multiple climatic and atmospheric factors will also be of great value, such as those looking at the combined effects of atmospheric change and alterations in water availability. These studies will allow us to better predict the effects of future climates on these fundamental ecological systems

    Root silicon

    No full text
    Data from silicon analysis of sugarcane roots. The 'plant' column is the identifier to be used in conjunction with the 'treatments' file for analysis

    biomass

    No full text
    Biomass data from sugarcane plants. The column 'plant' is the identifier and can be used in conjunction with 'treatments' file for analysis

    pot trial

    No full text
    Data from pot trial on insect performance including controls accounting for direct effects of treatments on insects

    Cereal aphid performance and feeding behaviour largely unaffected by silicon enrichment of host plants

    No full text
    There is growing interest in using silicon (Si) for pest and disease management in cropping systems, notably in cereals which have the capacity to hyper-accumulate Si from the soil. Si-mediated pest resistance is thought to operate via physical and allelochemical mechanisms, but it is unclear whether phloem-feeders (e.g. aphids) are as adversely affected as chewing pests. To date, the role of Si in wheat (Triticum aestivum) against aphid pests has focussed almost exclusively on one species (Schizaphis graminum). We investigated the impacts of Si supplementation on plant growth and foliar chemistry (concentrations of carbon, nitrogen and Si) and associated changes in performance parameters of two global aphid pests (Rhopalosiphum maidis and Diuraphis noxia). In addition, we used electrical penetration graphs to determine how Si supplementation affected aphid feeding behaviour. Si supplementation increased foliar Si concentrations by 170% and decreased foliar C by c. 5%. Si impacts on aphid performance were only observed for D. noxia. Longevity and intrinsic rates of increase (rm) decreased by c. 8 days and were c. 13.5% lower, respectively, on Si-supplemented plants. The performance of R. maidis was unaffected by Si supplementation, and neither species was affected in terms of feeding behaviour. We conclude that Si enrichment of wheat is unlikely to be an effective pest control strategy for R. maidis and D. noxia. In reporting these findings, we aim to help identify patterns in Si-based crop resistance and inform future directions (e.g. alternative pest species) for research

    treatments

    No full text
    Identifier file to allow allocation of 'plant' to treatment combinations for analysis
    corecore