12 research outputs found

    Meta-analysis of neural systems underlying placebo analgesia from individual participant fMRI data

    Get PDF
    The brain systems underlying placebo analgesia are insufficiently understood. Here we performed a systematic, participant-level meta-analysis of experimental functional neuroimaging studies of evoked pain under stimulus-intensity-matched placebo and control conditions, encompassing 603 healthy participants from 20 (out of 28 eligible) studies. We find that placebo vs. control treatments induce small, widespread reductions in pain-related activity, particularly in regions belonging to ventral attention (including mid-insula) and somatomotor networks (including posterior insula). Behavioral placebo analgesia correlates with reduced pain-related activity in these networks and the thalamus, habenula, mid-cingulate, and supplementary motor area. Placebo-associated activity increases occur mainly in frontoparietal regions, with high between-study heterogeneity. We conclude that placebo treatments affect pain-related activity in multiple brain areas, which may reflect changes in nociception and/or other affective and decision-making processes surrounding pain. Between-study heterogeneity suggests that placebo analgesia is a multi-faceted phenomenon involving multiple cerebral mechanisms that differ across studies

    Overt Visual Attention as a Causal Factor of Perceptual Awareness

    Get PDF
    Our everyday conscious experience of the visual world is fundamentally shaped by the interaction of overt visual attention and object awareness. Although the principal impact of both components is undisputed, it is still unclear how they interact. Here we recorded eye-movements preceding and following conscious object recognition, collected during the free inspection of ambiguous and corresponding unambiguous stimuli. Using this paradigm, we demonstrate that fixations recorded prior to object awareness predict the later recognized object identity, and that subjects accumulate more evidence that is consistent with their later percept than for the alternative. The timing of reached awareness was verified by a reaction-time based correction method and also based on changes in pupil dilation. Control experiments, in which we manipulated the initial locus of visual attention, confirm a causal influence of overt attention on the subsequent result of object perception. The current study thus demonstrates that distinct patterns of overt attentional selection precede object awareness and thereby directly builds on recent electrophysiological findings suggesting two distinct neuronal mechanisms underlying the two phenomena. Our results emphasize the crucial importance of overt visual attention in the formation of our conscious experience of the visual world

    Multiple brain networks mediating stimulus-pain relationships in humans

    No full text
    Abstract The brain transforms nociceptive input into a complex pain experience comprised of sensory, affective, motivational, and cognitive components. However, it is still unclear how pain arises from nociceptive input, and which brain networks coordinate to generate pain experiences. We introduce a new high-dimensional mediation analysis technique to estimate distributed, network-level patterns mediating the relationship between stimulus intensity and pain. In a large-scale analysis of functional magnetic resonance imaging data (N=284), we identify both traditional mediators in somatosensory brain regions and additional mediators located in prefrontal, midbrain, striatal, and default-mode regions unrelated to nociception in standard analyses. The whole brain mediators are specific for pain vs. aversive sounds and are organized in five functional networks. Brain mediators explain 32% more within-subject variance of single-trial pain ratings than previous brain-based models. Our results provide a new, broader view of the networks underlying pain experience, as well as distinct targets for interventions

    Multiple Brain Networks Mediating Stimulus–Pain Relationships in Humans

    No full text
    Abstract The brain transforms nociceptive input into a complex pain experience comprised of sensory, affective, motivational, and cognitive components. However, it is still unclear how pain arises from nociceptive input and which brain networks coordinate to generate pain experiences. We introduce a new high-dimensional mediation analysis technique to estimate distributed, network-level patterns that formally mediate the relationship between stimulus intensity and pain. We applied the model to a large-scale analysis of functional magnetic resonance imaging data (N = 284), focusing on brain mediators of the relationship between noxious stimulus intensity and trial-to-trial variation in pain reports. We identify mediators in both traditional nociceptive pathways and in prefrontal, midbrain, striatal, and default-mode regions unrelated to nociception in standard analyses. The whole-brain mediators are specific for pain versus aversive sounds and are organized into five functional networks. Brain mediators predicted pain ratings better than previous brain measures, including the neurologic pain signature (Wager et al. 2013). Our results provide a broader view of the networks underlying pain experience, as well as novel brain targets for interventions

    Pain-Related Nucleus Accumbens Function

    No full text
    The nucleus accumbens (NAc) has been implicated in sleep, reward, and pain modulation, but the relationship between these functional roles is unclear. This study aimed to determine whether NAc function at the onset and offset of a noxious thermal stimulus is enhanced by rewarding music, and whether that effect is reversed by experimental sleep disruption. Twenty-one healthy subjects underwent functional magnetic resonance imaging scans on 2 separate days after both uninterrupted sleep and experimental sleep disruption. During functional magnetic resonance imaging scans, participants experienced noxious stimulation while listening to individualized rewarding or neutral music. Behavioral results revealed that rewarding music significantly reduced pain intensity compared with neutral music, and disrupted sleep was associated with decreased pain intensity in the context of listening to music. In whole-brain family-wise error cluster-corrected analysis, the NAc was activated at pain onset, but not during tonic pain or at pain offset. Sleep disruption attenuated NAc activation at pain onset and during tonic pain. Rewarding music altered NAc connectivity with key nodes of the corticostriatal circuits during pain onset. Sleep disruption increased reward-related connectivity between the NAc and the anterior midcingulate cortex at pain onset. This study thus indicates that experimental sleep disruption modulates NAc function during the onset of pain in a manner that may be conditional on the presence of competing reward-related stimuli. These findings point to potential mechanisms for the interaction between sleep, reward, and pain, and suggest that sleep disruption affects both the detection and processing of aversive stimuli that may have important implications for chronic pain

    Individual variability in brain representations of pain

    No full text
    © 2022, The Author(s), under exclusive licence to Springer Nature America, Inc.Characterizing cerebral contributions to individual variability in pain processing is crucial for personalized pain medicine, but has yet to be done. In the present study, we address this problem by identifying brain regions with high versus low interindividual variability in their relationship with pain. We trained idiographic pain-predictive models with 13 single-trial functional MRI datasets (n = 404, discovery set) and quantified voxel-level importance for individualized pain prediction. With 21 regions identified as important pain predictors, we examined the interindividual variability of local pain-predictive weights in these regions. Higher-order transmodal regions, such as ventromedial and ventrolateral prefrontal cortices, showed larger individual variability, whereas unimodal regions, such as somatomotor cortices, showed more stable pain representations across individuals. We replicated this result in an independent dataset (n = 124). Overall, our study identifies cerebral sources of individual differences in pain processing, providing potential targets for personalized assessment and treatment of pain.11Nsciescopu

    Placebo Analgesia: A Predictive Coding Perspective

    No full text
    corecore