37 research outputs found

    Orthogonal polynomials, Julia sets, and invariant measures (mathematical sciences)

    Get PDF
    Issued as Preliminary report and Final report, Project no. G-37-63

    The Influence of Knowledge Management on Business Value in IT Projects: A Theoretical Model

    Get PDF
    This paper develops a theoretical model to explain the relationships between knowledge management and business value in IT-enabled business projects. It draws upon a wide range of literatures including project management, management information systems, software engineering, organization and management theory, organizational behaviour and strategy. The overall model comprises two sub-models. The first shows how the alignment of three project-based knowledges directly influences business value. The second shows how four knowledge-based concepts, knowledge management, knowledge stock, enabling environment, and knowledge practices, combine to create the project-based knowledges. Together these two sub-models provide an overall model of the causal system through which knowledge management influences business value. This research makes contributions to the research into IT Projects by (1) integrating fragmented literatures which connect knowledge management and project success; and (2) proposing for discussion a predictive model in which knowledge management influences business value. It has the potential when further developed to clarify what project managers can do to manage knowledge in a systematic way

    A Murine Model to Study Epilepsy and SUDEP Induced by Malaria Infection

    Get PDF
    One of the largest single sources of epilepsy in the world is produced as a neurological sequela in survivors of cerebral malaria. Nevertheless, the pathophysiological mechanisms of such epileptogenesis remain unknown and no adjunctive therapy during cerebral malaria has been shown to reduce the rate of subsequent epilepsy. There is no existing animal model of postmalarial epilepsy. In this technical report we demonstrate the first such animal models. These models were created from multiple mouse and parasite strain combinations, so that the epilepsy observed retained universality with respect to genetic background. We also discovered spontaneous sudden unexpected death in epilepsy (SUDEP) in two of our strain combinations. These models offer a platform to enable new preclinical research into mechanisms and prevention of epilepsy and SUDEP

    A Murine Model to Study Epilepsy and SUDEP Induced by Malaria Infection.

    Get PDF
    One of the largest single sources of epilepsy in the world is produced as a neurological sequela in survivors of cerebral malaria. Nevertheless, the pathophysiological mechanisms of such epileptogenesis remain unknown and no adjunctive therapy during cerebral malaria has been shown to reduce the rate of subsequent epilepsy. There is no existing animal model of postmalarial epilepsy. In this technical report we demonstrate the first such animal models. These models were created from multiple mouse and parasite strain combinations, so that the epilepsy observed retained universality with respect to genetic background. We also discovered spontaneous sudden unexpected death in epilepsy (SUDEP) in two of our strain combinations. These models offer a platform to enable new preclinical research into mechanisms and prevention of epilepsy and SUDEP

    Impact of Clouds and Hazes on the Simulated JWST Transmission Spectra of Habitable Zone Planets in the TRAPPIST-1 System

    Full text link
    The TRAPPIST-1 system, consisting of an ultra-cool host star having seven known Earth-size planets will be a prime target for atmospheric characterization with JWST. However, the detectability of atmospheric molecular species may be severely impacted by the presence of clouds and/or hazes. In this work, we perform 3-D General Circulation Model (GCM) simulations with the LMD Generic model supplemented by 1-D photochemistry simulations at the terminator with the Atmos model to simulate several possible atmospheres for TRAPPIST-1e, 1f and 1g: 1) modern Earth, 2) Archean Earth, and 3) CO2-rich atmospheres. JWST synthetic transit spectra were computed using the GSFC Planetary Spectrum Generator (PSG). We find that TRAPPIST-1e, 1f and 1g atmospheres, with clouds and/or hazes, could be detected using JWST's NIRSpec prism from the CO2 absorption line at 4.3 um in less than 15 transits at 3 sigma or less than 35 transits at 5 sigma. However, our analysis suggests that other gases would require hundreds (or thousands) of transits to be detectable. We also find that H2O, mostly confined in the lower atmosphere, is very challenging to detect for these planets or similar systems if the planets' atmospheres are not in a moist greenhouse state. This result demonstrates that the use of GCMs, self-consistently taking into account the effect of clouds and sub-saturation, is crucial to evaluate the detectability of atmospheric molecules of interest as well as for interpreting future detections in a more global (and thus robust and relevant) approach.Comment: 36 pages, 19 figure

    Performance of the X-Calibur Hard X-Ray Polarimetry Mission during its 2018/19 Long-Duration Balloon Flight

    Get PDF
    X-Calibur is a balloon-borne telescope that measures the polarization of high-energy X-rays in the 15--50keV energy range. The instrument makes use of the fact that X-rays scatter preferentially perpendicular to the polarization direction. A beryllium scattering element surrounded by pixellated CZT detectors is located at the focal point of the InFOC{\mu}S hard X-ray mirror. The instrument was launched for a long-duration balloon (LDB) flight from McMurdo (Antarctica) on December 29, 2018, and obtained the first constraints of the hard X-ray polarization of an accretion-powered pulsar. Here, we describe the characterization and calibration of the instrument on the ground and its performance during the flight, as well as simulations of particle backgrounds and a comparison to measured rates. The pointing system and polarimeter achieved the excellent projected performance. The energy detection threshold for the anticoincidence system was found to be higher than expected and it exhibited unanticipated dead time. Both issues will be remedied for future flights. Overall, the mission performance was nominal, and results will inform the design of the follow-up mission XL-Calibur, which is scheduled to be launched in summer 2022.Comment: 19 pages, 31 figures, submitted to Astropart. Phy

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    The Comet Interceptor Mission

    Get PDF
    Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms−1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule
    corecore