21 research outputs found
Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis
Objective To identify shared polygenic risk and causal associations in amyotrophic lateral sclerosis (ALS). Methods Linkage disequilibrium score regression and Mendelian randomization were applied in a large-scale, data-driven manner to explore genetic correlations and causal relationships between >700 phenotypic traits and ALS. Exposures consisted of publicly available genome-wide association studies (GWASes) summary statistics from MR Base and LD-hub. The outcome data came from the recently published ALS GWAS involving 20,806 cases and 59,804 controls. Multivariate analyses, genetic risk profiling, and Bayesian colocalization analyses were also performed. Results We have shown, by linkage disequilibrium score regression, that ALS shares polygenic risk genetic factors with a number of traits and conditions, including positive correlations with smoking status and moderate levels of physical activity, and negative correlations with higher cognitive performance, higher educational attainment, and light levels of physical activity. Using Mendelian randomization, we found evidence that hyperlipidemia is a causal risk factor for ALS and localized putative functional signals within loci of interest. Interpretation Here, we have developed a public resource () which we hope will become a valuable tool for the ALS community, and that will be expanded and updated as new data become available. Shared polygenic risk exists between ALS and educational attainment, physical activity, smoking, and tenseness/restlessness. We also found evidence that elevated low-desnity lipoprotein cholesterol is a causal risk factor for ALS. Future randomized controlled trials should be considered as a proof of causality. Ann Neurol 2019;85:470-481Peer reviewe
Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis
Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.Objective: To identify the genetic variants associated with juvenile ALS.Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism.Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members.Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway.Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.</p
Genome-wide Analyses Identify KIF5A as a Novel ALS Gene
To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe
Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.
We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 40-64 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered
Genome-wide structural variant analysis identifies risk loci for non-Alzheimer’s dementias
We characterized the role of structural variants, a largely unexplored type of genetic variation, in two non-Alzheimer’s dementias, namely Lewy body dementia (LBD) and frontotemporal dementia (FTD)/amyotrophic lateral sclerosis (ALS). To do this, we applied an advanced structural variant calling pipeline (GATK-SV) to short-read whole-genome sequence data from 5,213 European-ancestry cases and 4,132 controls. We discovered, replicated, and validated a deletion in TPCN1 as a novel risk locus for LBD and detected the known structural variants at the C9orf72 and MAPT loci as associated with FTD/ALS. We also identified rare pathogenic structural variants in both LBD and FTD/ALS. Finally, we assembled a catalog of structural variants that can be mined for new insights into the pathogenesis of these understudied forms of dementia
Troponin I Assay for Identification of a Significant Coronary Stenosis in Patients with Suspected Acute Myocardial Infarction and Wide QRS Complex
Background Common ECG criteria such as ST-segment changes are of limited value in patients with suspected acute myocardial infarction (AMI) and bundle branch block or wide QRS complex. A large proportion of these patients do not suffer from an AMI, whereas those with ST-elevation myocardial infarction (STEMI) equivalent AMI benefit from an aggressive treatment. Aim of the present study was to evaluate the diagnostic information of cardiac troponin I (cTnI) in hemodynamically stable patients with wide QRS complex and suspected AMI. Methods In 417 out of 1818 patients presenting consecutively between 01/2007 and 12/2008 in a prospective multicenter observational study with suspected AMI a prolonged QRS duration was observed. Of these, n = 117 showed significant obstructive coronary artery disease (CAD) used as diagnostic outcome variable. cTnI was determined at admission. Results Patients with significant CAD had higher cTnI levels compared to individuals without (median 250ng/L vs. 11ng/L; p<0.01). To identify patients needing a coronary intervention, cTnI yielded an area under the receiver operator characteristics curve of 0.849. Optimized cut-offs with respect to a sensitivity driven rule-out and specificity driven rule-in strategy were established (40ng/L/96ng/L). Application of the specificity optimized cut-off value led to a positive predictive value of 71% compared to 59% if using the 99th percentile cut-off. The sensitivity optimized cut-off value was associated with a negative predictive value of 93% compared to 89% provided by application of the 99th percentile threshold. Conclusion cTnI determined in hemodynamically stable patients with suspected AMI and wide QRS complex using optimized diagnostic thresholds improves rule-in and rule-out with respect to presence of a significant obstructive CAD
Identification of acute myocardial infarction in patients with atrial fibrillation and chest pain with a contemporary sensitive troponin I assay
Background: The introduction of modern troponin assays has facilitated diagnosis of acute myocardial infarction due to improved sensitivity with corresponding loss of specificity. Atrial fibrillation (AF) is associated with elevated levels of troponin. The aim of the present study was to evaluate the diagnostic performance of troponin I in patients with suspected acute coronary syndrome and chronic AF.
Methods: Contemporary sensitive troponin I was assayed in a derivation cohort of 90 patients with suspected acute coronary syndrome and chronic AF to establish diagnostic cut-offs. These thresholds were validated in an independent cohort of 314 patients with suspected myocardial infarction and AF upon presentation. Additionally, changes in troponin I concentration within 3 hours were used.
Results: In the derivation cohort, optimized thresholds with respect to a rule-out strategy with high sensitivity and a rule-in strategy with high specificity were established. In the validation cohort, application of the rule-out cut-off led to a negative predictive value of 97 %. The rule-in cut-off was associated with a positive predictive value of 88 % compared with 71 % if using the 99th percentile cut-off. In patients with troponin I levels above the specificity-optimized threshold, additional use of the 3-hour change in absolute/relative concentration resulted in a further improved positive predictive value of 96 %/100 %.
Conclusions: Troponin I concentration and the 3-hour change in its concentration provide valid diagnostic information in patients with suspected myocardial infarction and chronic AF. With regard to AF-associated elevation of troponin levels, application of diagnostic cut-offs other than the 99th percentile might be beneficial