110 research outputs found

    Developing oil and gas resources in Arctic waters

    Get PDF

    A universal anti-Xa assay for rivaroxaban, apixaban, and edoxaban measurements: method validation, diagnostic accuracy and external validation.

    Get PDF
    A universal anti-Xa assay for the determination of rivaroxaban, apixaban and edoxaban drug concentrations would simplify laboratory procedures and facilitate widespread implementation. Following two pilot studies analysing spiked samples and material from 698 patients, we conducted a prospective multicentre cross-sectional study, including 867 patients treated with rivaroxaban, apixaban or edoxaban in clinical practice to comprehensively evaluate a simple, readily available anti-Xa assay that would accurately measure drug concentrations and correctly predict relevant levels in clinical practice. Anti-Xa activity was measured by an assay calibrated with low-molecular-weight heparin (LMWH) in addition to ultra-high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). As an external validation, LMWH-calibrated anti-Xa activity was also determined in nine external laboratories. The LMWH-calibrated anti-Xa activity correlated strongly with rivaroxaban, apixaban or edoxaban drug levels [r <sub>s</sub> = 0·98, 95% confidence interval (CI) 0·98-0·98]. The sensitivity for the clinically relevant cut-off levels of 30, 50 and 100 ”g/l was 96·2% (95% CI 94·4-97·4), 96·4% (95% CI 94·4-97·7) and 96·7% (95% CI 94·3-98·1) respectively. Concordant results were obtained in the external validation study. In conclusion, a universal, LMWH-calibrated anti-Xa assay accurately measured rivaroxaban, apixaban and edoxaban concentrations and correctly predicted relevant drug concentrations in clinical practice

    Working paper analysing the economic implications of the proposed 30% target for areal protection in the draft post-2020 Global Biodiversity Framewor

    Get PDF
    58 pages, 5 figures, 3 tables- The World Economic Forum now ranks biodiversity loss as a top-five risk to the global economy, and the draft post-2020 Global Biodiversity Framework proposes an expansion of conservation areas to 30% of the earth’s surface by 2030 (hereafter the “30% target”), using protected areas (PAs) and other effective area-based conservation measures (OECMs). - Two immediate concerns are how much a 30% target might cost and whether it will cause economic losses to the agriculture, forestry and fisheries sectors. - Conservation areas also generate economic benefits (e.g. revenue from nature tourism and ecosystem services), making PAs/Nature an economic sector in their own right. - If some economic sectors benefit but others experience a loss, high-level policy makers need to know the net impact on the wider economy, as well as on individual sectors. [...]A. Waldron, K. Nakamura, J. Sze, T. Vilela, A. Escobedo, P. Negret Torres, R. Button, K. Swinnerton, A. Toledo, P. Madgwick, N. Mukherjee were supported by National Geographic and the Resources Legacy Fund. V. Christensen was supported by NSERC Discovery Grant RGPIN-2019-04901. M. Coll and J. Steenbeek were supported by EU Horizon 2020 research and innovation programme under grant agreement No 817578 (TRIATLAS). D. Leclere was supported by TradeHub UKRI CGRF project. R. Heneghan was supported by Spanish Ministry of Science, Innovation and Universities, Acciones de Programacion Conjunta Internacional (PCIN-2017-115). M. di Marco was supported by MIUR Rita Levi Montalcini programme. A. Fernandez-Llamazares was supported by Academy of Finland (grant nr. 311176). S. Fujimori and T. Hawegawa were supported by The Environment Research and Technology Development Fund (2-2002) of the Environmental Restoration and Conservation Agency of Japan and the Sumitomo Foundation. V. Heikinheimo was supported by Kone Foundation, Social Media for Conservation project. K. Scherrer was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 682602. U. Rashid Sumaila acknowledges the OceanCanada Partnership, which funded by the Social Sciences and Humanities Research Council of Canada (SSHRC). T. Toivonen was supported by Osk. Huttunen Foundation & Clare Hall college, Cambridge. W. Wu was supported by The Environment Research and Technology Development Fund (2-2002) of the Environmental Restoration and Conservation Agency of Japan. Z. Yuchen was supported by a Ministry of Education of Singapore Research Scholarship Block (RSB) Research FellowshipPeer reviewe

    Helicity of the W Boson in Lepton+Jets ttbar Events

    Get PDF
    We examine properties of ttbar candidates events in lepton+jets final states to establish the helicities of the W bosons in t->W+b decays. Our analysis is based on a direct calculation of a probability that each event corresponds to a ttbar final state, as a function of the helicity of the W boson. We use the 125 events/pb sample of data collected by the DO experiment during Run I of the Fermilab Tevatron collider at sqrt{s}=1.8 TeV, and obtain a longitudinal helicity fraction of F_0=0.56+/-0.31, which is consistent with the prediction of F_0=0.70 from the standard model

    Hard Single Diffraction in pbarp Collisions at root-s = 630 and 1800 GeV

    Get PDF
    Using the D0 detector, we have studied events produced in proton-antiproton collisions that contain large forward regions with very little energy deposition (``rapidity gaps'') and concurrent jet production at center-of-mass energies of root-s = 630 and 1800 Gev. The fractions of forward and central jet events associated with such rapidity gaps are measured and compared to predictions from Monte Carlo models. For hard diffractive candidate events, we use the calorimeter to extract the fractional momentum loss of the scattered protons.Comment: 11 pages 4 figures. submitted to PR

    Measurement of prompt D0^{0} and D‟\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Measurement of the CP-violating phase ϕs_{s} in the B0^{0}s_{s}→J/ψ φ(1020) →ΌâșΌ⁻KâșK⁻ channel in proton-proton collisions at √s = 13 TeV

    Get PDF
    • 

    corecore