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1. INTRODUCTION 

Public health services aim to prevent the myocardial diseases and to minimize adult death by using a fast and inexpensive tool, 

such as echocardiography imaging for screening cardiac anatomy. An accurate interpretation of 2D (two-dimensional) 

echocardiography images is highly claimed for early diagnoses. Typically, the infarct size of the ischemic muscle and its 

localization are strongly affecting the physicians’ ability to correctly identify the myocardial tissue injuries as well as the 

patients’ survival. In addition, the duration of ischemia is another controlling mortality factor. Consequently, it is essential to 

consider two main issues, namely (i) the several artifacts and alterations of the 2D echocardiography images that can induce 

significant misinterpretation that consecutively affect the diagnostic correctness, and (ii) the subtle changes of texture, which 

are problematic to the human eye. 

Two-dimensional echocardiography displays a cross-sectional view of the beating heart, the chambers of the heart, valves and 

the blood vessels. It is considered an important tool for myocardial tissue visualization, which is useful in the diagnosis of the 

onset and the monitoring of the progress of several myocardial diseases. 

Distinctive echocardiographic features of myocardial pathologies related to the texture appearance have been discussed in 

several studies [1-3]. Bibicu and Moraru [1] proposed a hybrid approach to estimate the cardiac cycle phases in 2D 

echocardiographic images based on geometrical position of the mitral valve and on a set of three image features. The Artificial 

Neural Networks (ANN) method has been used as a classifier to select the requested anatomical information. Based on 

quantitative texture analysis, Amichi and Laugier [2] searched for an increase in thickness of the myocardium at the end of the 

diastole and an increase in the reflectivity of the echoes coming from the affected area of the myocardium muscle. It was found 

that none of the first order parameters has been able to discriminate between normal and contused myocardium, instead, the 

second order parameters were capable to discriminate contused myocardium. Gerber et al. [3] used a neural network-based 

algorithm and statistical descriptors of the apparent echocardiographic texture to differentiate between intracardiac tumours and 

trombi. Several statistical descriptors have been used, namely homogeneity (or inverse difference moment), sum average, and 

product moment. 

To date, various fuzzy clustering algorithms had been proposed for image clustering [4-10]. Fuzzy ISODATA, fuzzy C-means 

(FCM), fuzzy K-nearest neighborhood algorithm and potential-based clustering are the most used. FCM is able to determine the 

membership values of a data point with the pre-defined number of clusters. Despite of the fact that FMC is sensitive to the 

initial conditions, it provides satisfactory results for clustering accuracy. Abonyi et al. [4] developed a clustering algorithm used 

for the clustering and the visualization of high-dimensional data. This algorithm arranged the clusters on a low dimensional grid 

for visualization. Krinidis and Chatzis [5] employed a FCM based on both spatial and gray level similarity measure algorithm 

for image clustering to achieve noise insensitiveness and image detail preservation. Park [6] introduced a model called intuitive 

fuzzy c-means, which was based on an ‘intuition level’ in order to alleviate the effect of noise. This model showed good results 

for data clustering and image segmentation problems. 

In the current work, we extended the standard FCM algorithm applicability by employing an image feature extraction. This 

approach provides measurable variables (i.e. pixels) that can be better grouped or clustered by using mathematical similarity, 

geometrical shapes or densities of the individual pixels. Texture analysis for echocardiography image inspection requires a set 

of features that accurately and effectively describe the textured myocardium. Image processing and intelligent pattern 

recognition for complex application problems have a relatively high rate of classification confusion due the high degree of 

similarity between the gray level distributions of the digital medical images. Thus, pixel-based analysis methods are insufficient 

to satisfy the needs of efficient and accurate classification. Since texture features characterize statistical or structural 

relationships between pixels, then texture analysis is considered an alternative solution to this problem [11-13]. 

The first order textural features are computed in a moving window or kernel based on the image histogram that determines the 

frequency of occurrence of the pixels’ values within the kernel. It is denoted as P(i, j) and indicates the probability of 

appearance of each pixel value placed at the coordinates (i, j). It is also correlated to the number of distinct gray levels in the 

image and does not consider the spatial interdependencies [14]. When the analysis is devoted to the relationship between pixel 

pairs, the texture is investigated by using the co-occurrence matrix. The most popular statistical method (such as the grey-level 

co-occurrence matrix) used in practice to measure the textural information of images has few drawbacks. Thus, He and Wang 

[15, 16] mentioned that the co-occurrence matrix elements depend on both the spatial relationships of the grey levels and on the 

intensity background variation into the image. Also, the displacement vector choice depends on experimental conditions. These 

works proposed the concept of texture unit to characterize some local texture aspects in one small pixel neighborhood (usually 

3 x 3 pixels) and in eight directions. Furthermore, the distribution of the texture units extracted from an image allows building 

the texture spectrum. The texture spectrum is used for image classification [17].  



The present work is interested in both spatial pixel distribution and their relative intensity relations in a small neighborhood. 

The used measurements in the proposed analysis are the entropy that measures the randomness of gray-level distribution and 

homogeneity that is a measure of homogeneity of an image. By definition, a homogeneous image area will contain only a few 

gray levels and a few but relatively high values of intensity. In texture analysis, the entropy and homogeneity are defined as the 

first-order textural features and the second-order textural features respectively, based on the relationship between pixel pairs 

[18-20]. In previous studies [1, 21], textural image features have been used for segmentation or classification. Thus, the 

standard deviation image features computed in k × k (k = 3, 5, 7) masks are combined with the gray-level information to extract 

the shapes of breast and liver cysts from ultrasound images. Statistical texture information of images, such as mean, standard 

deviation, skewness, kurtosis and entropy and four n × n kernels (n = 3, 5, 7, 9) have been used for semi-automatic detection of 

breast lesion boundaries [21]. The standard deviation, skewness and entropy image features are found being the most relevant 

image features. 

Motivated by the main declared goal of noise effect minimization and to get high accuracy of clustering, the present work 

proposed a classification method based on texture spectrum of image features and FCM clustering. The proposed study is 

driven by the idea to embed the new tool based on textural features for a fast and easier detection of abnormal anatomy of 

myocardium structures. The proposed work aims to induce a low-dimensionality approach based on the texture spectrum in 

new created statistical image features for an accurate classification of echocardiographic images. Based on our previous 

findings, entropy and homogeneity are selected as statistics descriptors used to characterize the gray-level distribution into the 

images and to extract the meaningful information for texture classification. The proposed method is robust against ambiguity as 

it retains much more information. The drawback of FCM noise sensitivity is overcome by using the entropy and homogeneity 

image features, where the important image details, such as boundaries or edges are preserved. 

The remaining sections are organized as follows. Section 2 presents the employed methodology. The results and discussion are 

given in Section 3, and the conclusions are drawn in Section 4. 

 

2. METHODS 

 

2.1 Texture spectrum 

A promising method for texture characterization and discrimination based on the statistical approach considers the concept of 

texture unit and texture spectrum. The Texture Unit (TU) extracts the local texture information from a neighborhood of 3 × 3 

and 5 × 5 pixels of a square raster. This window represents the smallest complete unit that surrounds the central pixel in all 

eight directions. He and Wang [15, 16] showed that any central pixel having an intensity value I0 is surrounded in a 3 × 3 

neighborhood by eight pixels having the intensities {I1,I2,…,I8}. The TU is defined as an eight elements set {E1, E2,…,E8} 

given as: 

 

 

                                                                                           (1) 

 

 

where ( )I i  is the intensity of the pixel gray levels at the coordinates 1,...,8i  inside the matrix of the Region of Interest (ROI). 

It should be noted that the element Ei is placed in the same position as the pixel i. The number of the all possible texture units 

is, in this case, 
83 6,561 , which is far less than the co-occurrence approach (namely, for an image with 8 bits per pixel and a 

gray level resolution of 256 and only two pixels considered: 2562 = 65,536). These sets of 6,561 TUs are considered the local-

texture attribute based on the relative grey-level relationships of a given pixel in relation to its neighbors. The texture 

information is provided by the statistics of the frequency of occurrence of all the TUs over a large region of an image. The 

similarity with image histogram exists in the sense that the abscissa indicates the texture unit number TUs and the ordinate 

represents the occurrence frequency.  

Textures have two components, namely texture elements (both periodic and random components) and random noise or 

background. Texture spectrum is constructed in a way that is similar to the white noise construction. For a completely random 

texture signal that contains some amount of the salt-and-pepper noise (the pixels in the image are either black or white), the 

texture spectrum shows a constant power spectral density. In the image, when the percentage of the texture components 

increases, the spectral density changes by forming a particular distribution of peaks. Moreover, different textures are 

characterized by distinct TUs, which, in turn, show different distributions in their texture spectra. In this framework, entropy 

images displays the whole gray-level distribution while the homogeneity images only retain a few gray levels having relatively 
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high values of intensity. This is the premise of the highly different texture spectrum appearance in image features approach. In 

the current work, the entropy and homogeneity image features are very power tools used to enhance the texture characteristic 

into images and, texture spectrum is a proper approach for texture analysis and characterization. 

 

2.2. Textural image features 

The entropy indicates the randomness in an image that has low values for smooth images and large values when the image is 

not texturally uniform. It is defined as a measurement of the level of disorder inside the gray level distribution, which can be 

expressed as [22]: 
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where, the first-order histogram P(i, j) is defined as: 

 

                                                                                            (3) 

 

Based on the gray-level distribution of the image and on the information provided by the co-occurrence matrix that measures 

second-order image statistics, homogeneity is given by [18]:  

 

                                                                                            (4) 

 

here, the matrix element  describes the joint probability that a pair of pixels in a relative distance inside the ROI have 

the pair of gray levels  . The weighting factor in equation  indicates small contributions from 

inhomogeneous areas where  to homogeneity. Homogeneity takes high values for low-contrast images (or for smaller 

gray tone differences in pixel pairs’ population).  

 

The Algorithm 1 reported the pseudo code for both entropy and homogeneity image features creation. 

 

Algorithm 1: Pseudo-code of the image features creation 

Inputs: ROIs cropped from myocardium echocardiography ultrasound images  

Output: Entropy/ homogeneity feature image 

Start   

  Read the input images  

  Establish the size of original image 

  Set the window size of the mask (w=3, h=3 and w=5, h=5)  

   for each pixel i=1 to row-w do  

      for each pixel j=1 to col-h do 

          Crop the original image 

          Create entropy image features  

          Create homogeneity image features 

                endfor 

  endfor 

Stop 
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In order to avoid losing the details of the original image, the processed image features should have some special characteristics, 

namely (i) to encompass both local spatial and local gray level information in order to maintain the noise insensitiveness; (ii) to 

control the impact of the neighborhood pixels based on their distance from the central pixel. Thus, the effect is inversely 

proportional to their distance to the center pixel and leads to a small influence of noisy pixels but has a potential effect to blur 

some details for large distances into image. 

The texture spectrum approach is performed on the image features of the images under concern. The texture spectra are 

obtained using a 3 x 3 sliding window. This size has been chosen taken into account that myocardium has a fine texture. From 

the outcomes of texture unit algorithm, a histogram is first generated to provide the average of the pixel values intensity (APV) 

of the texture spectrum, whose range lies within the unit interval. Generally, as expected, different texture images have different 

texture spectra. Also, in the present work, the filtering operation is unnecessary because the image features minimize the 

textural noise effect [21]. 

 

2.3. Texture classification  

The data provided by the texture spectra of the created features image is then classified to normal and infarct pathologies using 

clustering procedure. Clustering is carried out mainly to partition the set of n observations or data set into c clusters. Fuzzy 

clustering methods handle fuzzy datasets to categorize a piece of data into several clusters simultaneously with partial 

membership. Since the FCM is fast technique as it requires a small number of iterations to achieve the expected results of the 

clustering exercise and for an expected accuracy, it is used in the present work. FCM produces an optimal partition by 

minimizing the weighted within group sum of squared error objective function mJ  [23-25]: 
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where, n is the number of data to be clustered, c is the number of clusters to be created, 2 c n  , 
m

ix    is the data set in the 

m-dimensional vector space, and   represents the degree of membership of the observation ix  in the jth cluster. In 

addition,  1,m   is a weighting exponent that determines the fuzziness of the resulting clusters and, usually, is chosen as m = 

2. iv  is the prototype of the center of cluster j, which have to be determined, and  2 ,i jd x v  is a squared inner-product distance 

norm and can be determined by any appropriate distance measure between object or data set ix   and cluster center jv . The 

fuzzy partition of membership of the observation has to satisfy certain condition, namely 1
1,

c
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where the membership matrix elements that minimize the cost-function (5) are, 
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and   is the minimum difference imposed between iterations. 

 

Consequently, in order to find the solution of the object function, algorithm 2 presents the proposed pseudo code. 

 



Algorithm 2: Pseudo-code for finding the solution of the object function mJ  

Inputs: ROIs cropped from healthy and myocardial infarction images 

Output: Hierarchical clustering 

 Execute the following steps for each cropped ROI do 

   for each SAX and LAX view representations do 

   Count the pixels from spectrum  

Compute the average of the pixels from spectrum 

   Cluster the average values 

     for c=1,2  

        Set values for m=2, and  0,1   

        Initialize the fuzzy partition matrix 
 0

U  

        Set the loop counter b=0 

        Calculate the distance  2 , ,i jd x v 2 c n   

        Calculate the c cluster centers 
 b

jv   with 
 b

U  

        Calculate the membership matrix
 1b

U


  

           If 
   1

max
b b

U U 

   then stop,  

         else b=b+1 and repeat the previous steps from the start  

    endfor      

endfor 

 Endfor 

Stop 
 

The error norm in the termination criterion is usually chosen as     1
max

b b

ji ji
ik

u u

 . The usual choice is  =0.001. 

This clustering procedure is applied to classify the dataset under concern into healthy and myocardium infarction classes. The 

block diagram of the whole method is presented in figure 1. 

 

 

Fig. 1. Block diagram for finding the solution of the object function 

 

 

 

 

 



2.4. Image database 

An ultrasound images dataset encompassing both normal and infarct pathologies of 80 echocardiographic images representing 

short-axis (SAX, 40 images, distributed 20 for healthy and 20 for infarcted) and long-axis (LAX, 40 images, distributed 20 for 

healthy and 20 for infarcted) in apical two chambers (A2C) views is used. The targeted anatomical part is the myocardium that 

belongs to the left ventricle and is composed of contractile cardiac muscle (fig. 2). Texture analysis is restricted to certain ROIs. 

The ROIs selection requires a good balance between the need to capture sufficient textural information for classification and the 

requirement to avoid objects that span various tissue categories. The ROI area cover 1000 pixels and these myocardium areas 

allow the textural parameters to be statistically significant and reliable. The image datasets belong to a collections of video 

recordings existing in the Laboratory of Cardiovascular Imaging and Dynamics, Catholic University of Leuven, Leuven, 

Belgium. 

 

 

Figure 2. (a) Original echocardiography image, red square shows the chosen ROI; (b) ROI of the original echocardiography; (c) 

entropy feature image; (d) homogeneity entropy feature image. 

 

3. RESULTS AND DISCUSSION 

In order to enhance the robustness of the classification based on texture analysis, the feature images are constructed according 

to the content of the original image, when the value of each pixel is replaced by the local entropy and local homogeneity values 

computed in a 3 × 3 window. For a direct comparison between the efficacy of the mask size and in order to correlate to the 

clustering accuracy a second moving mask of 5 x 5 size is used. Typically, the widow size depends on the nature of the texture 

image. In the present work, using trial and error, it is found that a moving window of 3 x 3 size is the most adequate in order to 

achieve the declared goal of the current study. The texture spectrum approach has been applied to these image features (entropy 

feature image and homogeneity entropy feature image) of the healthy and myocardial infarction images. Texture spectra are 

obtained using a 3 x 3 sliding window. Afterward, a sparse histogram with 15 bins is generated from the texture unit algorithm 

output. This sparse histogram provides the APV of the texture spectrum, whose range lies within the unit interval. He and 

Wang [15, 16] proposed this sparse histogram representation as it drastically reduces the number of the texture units from 6,561 

to 15 units without any loss of informative and discriminative ability of texture tool. The sparse histogram with 15 bins allows 

for a faster and less complex algorithm by discarding any redundancies in texture spectrum analysis. Sparse histogram 

representation allows to store only those bins whose content is not empty. It overcomes the current difficulty of regular 

histogram when the number of bins becomes excessively large with the number of dimensions of the data [26]. Some results of 

the texture spectra in a sparse histogram representation of four images LAX/SAX views, healthy and infarcted, are presented in 

figure 3.  



 

Figure 3. Texture spectra for healthy and infarcted myocardium. Index (1) indicates spectra of original image; Index (2) 

indicates spectra of entropy image feature; index (3) indicates spectra of homogeneity image feature. First row:  healthy images 

in LAX view.  Second row: myocardial infarction in LAX view. Third row: healthy images in SAX view. Forth row: 

myocardial infarction in SAX view. 

 

 

The previously described algorithms and texture spectrum have been applied to the 80 raw echocardiographic images database. 

The images are classified using the above-described FCM algorithm. Figure 4 displays the fuzzy cluster analysis results for 

targeted images, namely SAX and LAX views for original/raw healthy and infarcted images and processed entropy and 

homogeneity image feature for the same SAX and LAX views/healthy and infarcted. Two different classes represent healthy 

and myocardium infarction.  

Figure 4 depicts that the data in the same cluster are as similar as possible, while the data in different clusters are as different as 

possible. The center of gravity of the data set is the location that minimizes the distance between the members of the cluster and 

it is a clearly spatial separation between healthy and myocardial infarction.  



 

Figure 4. FCM classification output results, where blue color is assigned to the healthy patients and red to myocardial 

infarction. FCM algorithm clusters the average of the pixel intensity values (APV) of the texture spectrum for:  (a) ROI cropped 

from LAX view for original/raw healthy and infarcted images; (b) ROI cropped from SAX view for original/raw healthy and 

infarcted images; (c) Entropy image feature of LAX view belonging to images (a);  (d) Entropy image feature of SAX view 

belonging to images (b);  (e) Homogeneity image feature of LAX view belonging to images (a); (f) Homogeneity image feature 

of SAX view belonging to images (b). 

 

 

The Euclidean distance function between the centroids is of 0.009 for LAX view and of 0.007 for SAX view, when healthy vs. 

myocardial infarction are compared (fig. 4a and b). For entropy image feature, the Euclidean distance function between the 

centroids increases to 0.0105 for LAX view and of 0.0112 for SAX view (fig. 4c and d). In the case of homogeneity image 

feature, the Euclidean distance between the centroids is of 0.0115 for LAX view, but decreases to 0.0065 for SAX view (fig. 4e 

and f). When the Euclidian distance or squared inner-product distance norm is zero a singularity in FCM occurs. In this 

particular case, the algorithm will assign the memberships arbitrarily among the clusters. The obtained results are promising 



and show the success of both entropy and homogeneity image features in classification task. Moreover, it is established that the 

entropy-based FCM clustering provided more concentrated with far centroids of the two classes compared to the homogeneity-

based FCM clustering, which has scattered clusters points with smaller distances between the clusters centroid compared to the 

entropy measurements.    

The FCM algorithm allows an item (or data point) to belong to more than one class and the degree of membership (or 

likelihood) for each item is given by a probability distribution over the clusters. Due to the range values of the APV provided 

by the texture spectrum, the FCM algorithm is applied in the present study. The computed APV range from 0.012 to 0.075 for 

all studied images, either raw images or image features, and FCM is able to identify classes with almost similar APV. Also the 

number of clusters is 2 and this qualifies the FCM algorithm for the proposed analysis. In order to evaluate the accuracy of the 

clustering operation, an appropriate tolerance measure based on standard deviation is proposed. It is a measure of variation 

within a cluster. Ideally, for each class it is required to maximize the inclusion degree of the data into the cluster. In order to 

evaluate this, the standard deviation is computed for each APV vector of the analyzed data as reported in Table 1. The higher 

value of the standard deviation indicates the higher possibility that the cluster results to be inadequate. 

Table 1 indicates that for the raw data (in both the LAX and SAX views), the spread (standard deviation) of the data tends to be 

maximal and the member of clusters tend to blend each other. In the case of entropy image feature, the spread of the data 

decreases with 77% for healthy subjects and with 38% for myocardial infarction. The homogeneity image feature indicates 

standard deviation values smaller than those of the raw data but higher than those of the entropy image feature. When the mask 

size has been increased to 5 x 5, the spread of the cluster’s members increased. Also, the texture spectrum became more flat 

because the larger window size generates a smoothing effect over the pixels. This finding clearly indicates that the increase of 

the mask size is not a solution to pick up changes in the echocardiography images. 

 

Table 1. Standard deviation of the cluster member 

Classes LAX SAX 

 
3x3 5x5 3x3 5x5 

Healthy /raw data 0.08806 0.0941 0.09763 0.09548 

Myocardial 

infarction –/raw 

data 

0.08891 0.0944 0.09104 0.09912 

Entropy image 

feature/ healthy 

class 

0.03652 0.05545 0.03626 0.05312 

Entropy image 

feature/ 

myocardial 

infarction class 

0.01921 0.03612 0.02901 0.04151 

Homogeneity 

image 

feature/healthy 

class 

0.08842 0.09681 0.07079 0.09121 

Homogeneity 

image 

feature/myocardial 

infarction class 

0.05894 0.07298 0.05623 0.06111 

 

 

It should be noted that both the spread and distance between centroids are almost the same in the LAX and SAX views, for each 

analyzed classes. The homogeneity image feature shows an inconsistency behavior even if the spread of the data is smaller than 

for the case of the raw data. Entropy feature gives a measure of coarseness of the image and its value increases in 

correspondence of the decreases of the homogeneity. Accordingly, the present work established that the entropy image feature 

achieved superior classification of the healthy and myocardial infarction images regardless of the view mode.  

The preceding results depicted that the achieved main findings are completely agree with other evaluations and applications. 

Ciulla et al. [14] reported results on the role of collagen in the left ventricular hypertrophy for hypertensive patients based on 

the first order statistical feature, such as average pixel intensity, skewness, kurtosis, and on the broad band of the echoes. 



Significant differences between parameters have been found when they have been compared with the corresponding values 

obtained in control patients. Sudarshan et al. [22] proposed a computerized scheme based on second order statistics calculated 

from gray level co-occurrence matrix (GLCM), discrete wavelet transform and higher-order spectra texture descriptors in order 

to evaluate the echocardiography image features and to provide the cardiologists an objective interpretation of 

echocardiography. All the 16 second-order statistical parameters obtained using GLCM led to distinct differentiation between 

normal and myocardial infarction classes. Moldovanu et al. [27] reported the variation of entropy value from 6.23 ± 0.52 for 

control subjects to 9.95 ± 0.17 for myocardial infarction. The entropy has been found as a salient feature to clearly differentiate 

between pathologies. 

Sudarshan et al. [28] used an algorithm for automated myocardial infarction characterization based on features extracted from 

parasternal short axis and apical four chambers cross-sectional view. The relative wavelet energy and entropy of the stationary 

wavelet transform have fed a Support Vector Machine (SVM) classifier to characterize the normal and myocardial infarction 

using a minimum number of features. It has been claimed that the proposed technique is able to identify the fine pixel variations 

in echocardiography images and the algorithm achieved an average accuracy of 96.8% with 16 features extracted. 

 

4. CONCLUSIONS 

From the hundreds of texture features that could be used to evaluate the heart tissue structure, the present work has focused on 

our previous experience of only using two features, namely the entropy and homogeneity. The key concept of the proposed 

method is to use the texture spectrum coupled with entropy and homogeneity image features for myocardium muscle 

characterization. The texture spectra of the myocardium tissue have been estimated, which differed significantly in the entropy 

image features. The texture classification experiments have been performed in the framework of fuzzy c-means algorithm. The 

classification results indicated that entropy image feature has the lower spread of the data in the clusters of healthy subjects and 

myocardial infarction. Also, the Euclidean distance function between the cluster centroids has the higher values for both LAX 

and SAX views for entropy images. 
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