190 research outputs found

    L-theanine in the adjunctive treatment of generalized anxiety disorder: a double-blind, randomised, placebo-controlled trial

    Get PDF
    Partial or non-response to antidepressants in Generalized Anxiety Disorder (GAD) is common in clinical settings, and adjunctive biological interventions may be required. Adjunctive herbal and nutraceutical treatments are a novel and promising treatment option. L-theanine is a non-protein amino acid derived most-commonly from tea (Camellia sinensis) leaves, which may be beneficial in the treatment of anxiety and sleep disturbance as suggested by preliminary evidence. We conducted a 10-week study (consisting of an 8-week double-blind placebo-controlled period, and 1-week pre-study and 2-week post-study single-blinded observational periods) involving 46 participants with a DSM-5 diagnosis of GAD. Participants received adjunctive L-theanine (450–900 mg) or matching placebo with their current stable antidepressant treatment, and were assessed on anxiety, sleep quality, and cognition outcomes. Results revealed that adjunctive L-theanine did not outperform placebo for anxiety reduction on the HAMA (p = 0.73) nor insomnia severity on the Insomnia Severity Index (ISI; p = 0.35). However, LT treated participants reported greater self-reported sleep satisfaction than placebo (ISI item 4; p = 0.015). Further, a separation in favour of L-theanine was noted on the ISI in those with non-clinical levels of insomnia symptoms (ISI ≤ 14; p = 0.007). No significant cognitive effects (trail making time and the modified emotional Stroop) were revealed. While this preliminary study did not support the efficacy of L-theanine in the treatment of anxiety symptoms in GAD, further studies to explore the application of L-theanine in sleep disturbance are warranted

    TLR7-mediated skin inflammation remotely triggers chemokine expression and leukocyte accumulation in the brain

    Get PDF
    Background: The relationship between the brain and the immune system has become increasingly topical as, although it is immune-specialised, the CNS is not free from the influences of the immune system. Recent data indicate that peripheral immune stimulation can significantly affect the CNS. But the mechanisms underpinning this relationship remain unclear. The standard approach to understanding this relationship has relied on systemic immune activation using bacterial components, finding that immune mediators, such as cytokines, can have a significant effect on brain function and behaviour. More rarely have studies used disease models that are representative of human disorders. Methods: Here we use a well-characterised animal model of psoriasis-like skin inflammation—imiquimod—to investigate the effects of tissue-specific peripheral inflammation on the brain. We used full genome array, flow cytometry analysis of immune cell infiltration, doublecortin staining for neural precursor cells and a behavioural read-out exploiting natural burrowing behaviour. Results: We found that a number of genes are upregulated in the brain following treatment, amongst which is a subset of inflammatory chemokines (CCL3, CCL5, CCL9, CXCL10, CXCL13, CXCL16 and CCR5). Strikingly, this model induced the infiltration of a number of immune cell subsets into the brain parenchyma, including T cells, NK cells and myeloid cells, along with a reduction in neurogenesis and a suppression of burrowing activity. Conclusions: These findings demonstrate that cutaneous, peripheral immune stimulation is associated with significant leukocyte infiltration into the brain and suggest that chemokines may be amongst the key mediators driving this response

    The distribution of pond snail communities across a landscape: separating out the influence of spatial position from local habitat quality for ponds in south-east Northumberland, UK

    Get PDF
    Ponds support a rich biodiversity because the heterogeneity of individual ponds creates, at the landscape scale, a diversity of habitats for wildlife. The distribution of pond animals and plants will be influenced by both the local conditions within a pond and the spatial distribution of ponds across the landscape. Separating out the local from the spatial is difficult because the two are often linked. Pond snails are likely to be affected by both local conditions, e.g. water hardness, and spatial patterns, e.g. distance between ponds, but studies of snail communities struggle distinguishing between the two. In this study, communities of snails were recorded from 52 ponds in a biogeographically coherent landscape in north-east England. The distribution of snail communities was compared to local environments characterised by the macrophyte communities within each pond and to the spatial pattern of ponds throughout the landscape. Mantel tests were used to partial out the local versus the landscape respective influences. Snail communities became more similar in ponds that were closer together and in ponds with similar macrophyte communities as both the local and the landscape scale were important for this group of animals. Data were collected from several types of ponds, including those created on nature reserves specifically for wildlife, old field ponds (at least 150 years old) primarily created for watering livestock and subsidence ponds outside protected areas or amongst coastal dunes. No one pond type supported all the species. Larger, deeper ponds on nature reserves had the highest numbers of species within individual ponds but shallow, temporary sites on farm land supported a distinct temporary water fauna. The conservation of pond snails in this region requires a diversity of pond types rather than one idealised type and ponds scattered throughout the area at a variety of sites, not just concentrated on nature reserves

    Diagnostic Accuracy of the Leishmania OligoC-TesT and NASBA-Oligochromatography for Diagnosis of Leishmaniasis in Sudan

    Get PDF
    The leishmaniases are a group of vector-borne diseases caused by protozoan parasites of the genus Leishmania. The parasites are transmitted by phlebotomine sand flies and can cause, depending on the infecting species, three clinical manifestations of leishmaniasis: visceral leishmaniasis (VL), post kala-azar dermal leishmaniasis (PKDL) and cutaneous leishmaniasis (CL) including the mucocutaneous form. VL, PKDL as well as CL are endemic in several parts of Sudan, and VL especially represents a major health problem in this country. Molecular tests such as the polymerase chain reaction (PCR) or nucleic acid sequence based assay (NASBA) are powerful techniques for accurate detection of the parasite in clinical specimens, but broad use is hampered by their complexity and lack of standardisation. Recently, the Leishmania OligoC-TesT and NASBA-Oligochromatography were developed as simplified and standardised PCR and NASBA formats. In this study, both tests were phase II evaluated for diagnosis of VL, PKDL and CL in Sudan

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Spike firing and IPSPs in layer V pyramidal neurons during beta oscillations in rat primary motor cortex (M1) in vitro

    Get PDF
    Beta frequency oscillations (10-35 Hz) in motor regions of cerebral cortex play an important role in stabilising and suppressing unwanted movements, and become intensified during the pathological akinesia of Parkinson's Disease. We have used a cortical slice preparation of rat brain, combined with concurrent intracellular and field recordings from the primary motor cortex (M1), to explore the cellular basis of the persistent beta frequency (27-30 Hz) oscillations manifest in local field potentials (LFP) in layers II and V of M1 produced by continuous perfusion of kainic acid (100 nM) and carbachol (5 µM). Spontaneous depolarizing GABA-ergic IPSPs in layer V cells, intracellularly dialyzed with KCl and IEM1460 (to block glutamatergic EPSCs), were recorded at -80 mV. IPSPs showed a highly significant (P< 0.01) beta frequency component, which was highly significantly coherent with both the Layer II and V LFP oscillation (which were in antiphase to each other). Both IPSPs and the LFP beta oscillations were abolished by the GABAA antagonist bicuculline. Layer V cells at rest fired spontaneous action potentials at sub-beta frequencies (mean of 7.1+1.2 Hz; n = 27) which were phase-locked to the layer V LFP beta oscillation, preceding the peak of the LFP beta oscillation by some 20 ms. We propose that M1 beta oscillations, in common with other oscillations in other brain regions, can arise from synchronous hyperpolarization of pyramidal cells driven by synaptic inputs from a GABA-ergic interneuronal network (or networks) entrained by recurrent excitation derived from pyramidal cells. This mechanism plays an important role in both the physiology and pathophysiology of control of voluntary movement generation

    Default-Mode-Like Network Activation in Awake Rodents

    Get PDF
    During wakefulness and in absence of performing tasks or sensory processing, the default-mode network (DMN), an intrinsic central nervous system (CNS) network, is in an active state. Non-human primate and human CNS imaging studies have identified the DMN in these two species. Clinical imaging studies have shown that the pattern of activity within the DMN is often modulated in various disease states (e.g., Alzheimer's, schizophrenia or chronic pain). However, whether the DMN exists in awake rodents has not been characterized. The current data provides evidence that awake rodents also possess ‘DMN-like’ functional connectivity, but only subsequent to habituation to what is initially a novel magnetic resonance imaging (MRI) environment as well as physical restraint. Specifically, the habituation process spanned across four separate scanning sessions (Day 2, 4, 6 and 8). At Day 8, significant (p<0.05) functional connectivity was observed amongst structures such as the anterior cingulate (seed region), retrosplenial, parietal, and hippocampal cortices. Prior to habituation (Day 2), functional connectivity was only detected (p<0.05) amongst CNS structures known to mediate anxiety (i.e., anterior cingulate (seed region), posterior hypothalamic area, amygdala and parabracial nucleus). In relating functional connectivity between cingulate-default-mode and cingulate-anxiety structures across Days 2-8, a significant inverse relationship (r = −0.65, p = 0.0004) was observed between these two functional interactions such that increased cingulate-DMN connectivity corresponded to decreased cingulate anxiety network connectivity. This investigation demonstrates that the cingulate is an important component of both the rodent DMN-like and anxiety networks

    The Cyst-Theca Relationship Of The Dinoflagellate Cyst Trinovantedinium Pallidifulvum, With Erection Of Protoperidinium Lousianensis Sp Nov And Their Phylogenetic Position Within The Conica Group

    Get PDF
    We establish the cyst-theca relationship of the dinoflagellate cyst species Trinovantedinium pallidifulvum Matsuoka 1987 based on germination experiments of specimens isolated from the Gulf of Mexico. We show that the motile stage is a new species, designated as Protoperidinium louisianensis. We also determine its phylogenetic position based on single-cell polymerase chain reaction (PCR) of a single cell germinated from the Gulf of Mexico cysts. To further refine the phylogeny, we determined the large subunit (LSU) sequence through single-cell PCR of the cyst Selenopemphix undulata isolated from Brentwood Bay (Saanich Inlet, BC, Canada). The phylogeny shows that P. louisianensis is closest to P. shanghaiense, the motile stage of T. applanatum, and is consistent with the monophyly of the genus Trinovantedinium. Selenopemphix undulata belongs to a different clade than Selenopemphix quanta (alleged cyst of P. conicum), suggesting that the genus Selenopemphix is polyphyletic. Trinovantedinium pallidifulvum is widely distributed with occurrences in the Gulf of Mexico, the North Atlantic, the northeast Pacific and southeast Asia. In addition, we illustrate the two other extant species, Trinovantedinium applanatum and Trinovantedinium variabile, and two morphotypes of Trinovantedinium. Geochemical analyses of the cyst wall of T. pallidifulvum indicate the presence of amide groups in agreement with other heterotrophic dinoflagellate species, although the cyst wall of T. pallidifulvum also includes some unique features
    corecore