18 research outputs found

    Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    Get PDF
    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii  > 0.5µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models

    Multi-sectoral Impact Assessment of an Extreme African Dust Episode in the Eastern Mediterranean in March 2018

    Get PDF
    In late March 2018, a large part of the Eastern Mediterranean experienced an extraordinary episode of African dust, one of the most intense in recent years, here referred to as the “Minoan Red” event. The episode mainly affected the Greek island of Crete, where the highest aerosol concentrations over the past 15 yeas were recorded, although impacts were also felt well beyond this core area. Our study fills a gap in dust research by assessing the multi-sectoral impacts of sand and dust storms and their socioeconomic implications. Specifically, we provide a multi-sectoral impact assessment of Crete during the occurrence of this exceptional African dust event. During the day of the occurrence of the maximum dust concentration in Crete, i.e. March 22nd, 2018, we identified impacts on meteorological conditions, agriculture, transport, energy, society (including closing of schools and cancellation of social events), and emergency response systems. As a result, the event led to a 3-fold increase in daily emergency responses compare to previous days associated with urban emergencies and wildfires, a 3.5-fold increase in hospital visits and admissions for Chronic Obstructive Pulmonary Disease (COPD) exacerbations and dyspnoea, a reduction of visibility causing aircraft traffic disruptions (eleven cancellations and seven delays), and a reduction of solar energy production. We estimate the cost of direct and indirect effects of the dust episode, considering the most affected socio-economic sectors (e.g. civil protection, aviation, health and solar energy production), to be between 3.4 and 3.8 million EUR for Crete. Since such desert dust transport episodes are natural, meteorology-driven and thus to a large extent unavoidable, we argue that the efficiency of actions to mitigate dust impacts depends on the accuracy of operational dust forecasting and the implementation of relevant early warning systems for social awareness

    Efficacy of progesterone supplementation during early pregnancy in cows: a meta-analysis

    Get PDF
    Progesterone is a critical hormone during early pregnancy in the cow. As a result, a number of studies have investigated the effects of progesterone supplementation on pregnancy rates. In this study, a meta-analysis using a univariate binary random effects model was carried out on 84 specific treatments reported in 53 publications involving control (n = 9905) and progesterone-treated (n = 9135) cows. Although the results of individual studies showed wide variations (−40% to +50% point changes), progesterone treatment resulted in an overall increase in pregnancy rate odds ratio (OR = 1.12; P < 0.01). Improvements in pregnancy rate were only observed in cows treated at natural estrus (OR = 1.41, P < 0.01) and not following synchronization of estrus or ovulation. Although treatment between Days 3 to 7 postinsemination was beneficial (OR = 1.15; P < 0.01), treatment earlier or later than this was not. Progesterone supplementation was beneficial in cows of lower fertility (<45% control pregnancy rate) but not in cows with higher fertility. These results indicated that the benefit of progesterone supplementation on fertility of cows required exogenous progesterone supplementation to start between Day 3 to 7 and the appropriate reproductive status (i.e., lower fertility, natural estrus) of the treated cows

    Multi-sectoral impact assessment of an extreme African dust episode in the Eastern Mediterranean in March 2018

    Get PDF
    In late March 2018, a large part of the Eastern Mediterranean experienced an extraordinary episode of African dust, one of the most intense in recent years, here referred to as the “Minoan Red” event. The episode mainly affected the Greek island of Crete, where the highest aerosol concentrations over the past 15 yeas were recorded, although impacts were also felt well beyond this core area. Our study fills a gap in dust research by assessing the multi-sectoral impacts of sand and dust storms and their socioeconomic implications. Specifically, we provide a multi-sectoral impact assessment of Crete during the occurrence of this exceptional African dust event. During the day of the occurrence of the maximum dust concentration in Crete, i.e. March 22nd, 2018, we identified impacts on meteorological conditions, agriculture, transport, energy, society (including closing of schools and cancellation of social events), and emergency response systems. As a result, the event led to a 3-fold increase in daily emergency responses compare to previous days associated with urban emergencies and wildfires, a 3.5-fold increase in hospital visits and admissions for Chronic Obstructive Pulmonary Disease (COPD) exacerbations and dyspnoea, a reduction of visibility causing aircraft traffic disruptions (eleven cancellations and seven delays), and a reduction of solar energy production. We estimate the cost of direct and indirect effects of the dust episode, considering the most affected socio-economic sectors (e.g. civil protection, aviation, health and solar energy production), to be between 3.4 and 3.8 million EUR for Crete. Since such desert dust transport episodes are natural, meteorology-driven and thus to a large extent unavoidable, we argue that the efficiency of actions to mitigate dust impacts depends on the accuracy of operational dust forecasting and the implementation of relevant early warning systems for social awareness.Thanks are due to FCT/MCTES for the financial support to CESAM (UIDP/50017/2020+UIDB/50017/2020) through national funds, and also to the Icelandic Research Fund for the grant no. 207057-051. Authors S. Kazadzis and P. Kosmopoulos would like to acknowledge the European Commission project EuroGEO e-shape (grant agreement No 820852). Also, International Cooperative for Aerosol Prediction (ICAP) and NASA mission researchers are gratefully for providing aerosol data for this study. Aurelio Tobias was supported by MCIN/AEI/10.13039/501100011033 (grant CEX2018-000794-S). S. Kutuzov acknowledges the Megagrant project (agreement No. 075-15-2021-599, 8.06.2021)

    Strategic positioning of the ‘ERATOSTHENES Research Centre’ and exploration of new R&D opportunities in the fields of Earth Surveillance and Space-Based of the Environment

    Get PDF
    The aim of this paper is to present our strategy and vision to upgrade the existing ERATOSTHENES Research Centre (ERC), established within Cyprus University of Technology (CUT), into a sustainable, viable and autonomous Centre of Excellence (CoE) for Earth Surveillance and Space-Based Monitoring of the Environment (EXCELSIOR), which will provide the highest quality of related services both on the National, European and International levels. The ‘EXCELSIOR’ project is a Horizon 2020 Teaming project, addressing the reduction of substantial disparities in the European Union by supporting research and innovation activities and systems in low performing countries. It also aims at establishing long-term and strategic partnerships between the Teaming partners, thus reducing internal research and innovation disparities within European Research and Innovation landscape. The ERCis already an established player in the local community and has excellent active collaboration with actors from various sectors in (a) the government, (b) industry, (c) local organisations, and (d) society. In order to further engage users and citizens and to become more attractive to international research and education community, the Centre aims to be fully involved in strategic positioning on the national level, but also in Europe, the Middle East region and internationally. Some examples of how space technologies are integrated with other tools or techniques such as UAV, field spectroscopy, micro-sensors, EO space/in-situ sensors etc. for the systematic monitoring of the environment is shown. Indeed such examples fulfills the objectives of the COPERNICUS academy network (in which ERC is a member) for empowering the next generation of researchers, scientists, and entrepreneurs with suitable skill sets to use Copernicus data and information services to their full potential. Finally, opportunities for future collaboration and investments with the ERC in the Eastern Mediterranean Region are stated. Five partners have united to upgrade the existing ERC into a CoE, with the common vision to become a world-class innovation, research and education centre, actively contributing to the European Research Area (ERA). More specifically, the Teaming project is a team effort between the Cyprus University of Technology (CUT, acting as the coordinator), the German Aerospace Centre (DLR), the Institute for Astronomy and Astrophysics Space Applications and Remote Sensing of the National Observatory of Athens (NOA), the German Leibniz Institute for Tropospheric Research (TROPOS) and the Cyprus’ Department of Electronic Communications of the Ministry of Transport, Communications and Works (DEC-MTCW)

    Polarization Lidar for Detecting Dust Orientation

    Get PDF
    We present the preliminary design of a polarization lidar system for detecting oriented dust particles. The system emits linearly- and circularly-polarized light from two lasers and detects the backscattered light, using two telescopes. The emitted light by each laser is detected from both telescopes alternatively, providing in this way two times the signals recorded by a conventional system. The system has also the capability of performing measurements at different zenith angles. Its detection strategy is based on scattering calculations for mixtures of oriented and randomly-oriented dust particles in different atmospheric scenarios

    Polarization Lidar for Detecting Dust Orientation

    No full text
    We present the preliminary design of a polarization lidar system for detecting oriented dust particles. The system emits linearly- and circularly-polarized light from two lasers and detects the backscattered light, using two telescopes. The emitted light by each laser is detected from both telescopes alternatively, providing in this way two times the signals recorded by a conventional system. The system has also the capability of performing measurements at different zenith angles. Its detection strategy is based on scattering calculations for mixtures of oriented and randomly-oriented dust particles in different atmospheric scenarios

    The In Vitro Impact of the Herbicide Roundup on Human Sperm Motility and Sperm Mitochondria

    No full text
    Toxicants, such as herbicides, have been hypothesized to affect sperm parameters. The most common method of exposure to herbicides is through spraying or diet. The aim of the present study was to investigate the effect of direct exposure of sperm to 1 mg/L of the herbicide Roundup on sperm motility and mitochondrial integrity. Sperm samples from 66 healthy men who were seeking semen analysis were investigated after written informed consent was taken. Semen analysis was performed according to the World Health Organization guidelines (WHO, 2010). Mitochondrial integrity was assessed through mitochondrial staining using a mitochondria-specific dye, which is exclusively incorporated into functionally active mitochondria. A quantity of 1 mg/L of Roundup was found to exert a deleterious effect on sperm’s progressive motility, after 1 h of incubation (mean difference between treated and control samples = 11.2%) in comparison with the effect after three hours of incubation (mean difference = 6.33%, p &lt; 0.05), while the relative incorporation of the mitochondrial dye in mitochondria of the mid-piece region of Roundup-treated spermatozoa was significantly reduced compared to relative controls at the first hour of incubation, indicating mitochondrial dysfunction by Roundup. Our results indicate that the direct exposure of semen samples to the active constituent of the herbicide Roundup at the relatively low concentration of 1 mg/L has adverse effects on sperm motility, and this may be related to the observed reduction in mitochondrial staining
    corecore