10 research outputs found

    Advances in Plant Tolerance to Biotic Stresses

    Get PDF
    Plants being sessile in nature encounter numerous biotic agents, including bacteria, fungi, viruses, insects, nematodes and protists. A great number of publications indicate that biotic agents significantly reduce crop productivity, although there are some biotic agents that symbiotically or synergistically co-exist with plants. Nonetheless, scientists have made significant advances in understanding the plant defence mechanisms expressed against biotic stresses. These mechanisms range from anatomy, physiology, biochemistry, genetics, development and evolution to their associated molecular dynamics. Using model plants, e.g., Arabidopsis and rice, efforts to understand these mechanisms have led to the identification of representative candidate genes, quantitative trait loci (QTLs), proteins and metabolites associated with plant defences against biotic stresses. However, there are drawbacks and insufficiencies in precisely deciphering and deploying these mechanisms, including only modest adaptability of some identified genes or QTLs to changing stress factors. Thus, more systematic efforts are needed to explore and expand the development of biotic stress resistant germplasm. In this chapter, we provided a comprehensive overview and discussed plant defence mechanisms involving molecular and cellular adaptation to biotic stresses. The latest achievements and perspective on plant molecular responses to biotic stresses, including gene expression, and targeted functional analyses of the genes expressed against biotic stresses have been presented and discussed

    Advances in Plant Tolerance to Abiotic Stresses

    Get PDF
    During the last 50 years, it has been shown that abiotic stresses influence plant growth and crop production greatly, and crop yields have evidently stagnated or decreased in economically important crops, where only high inputs assure high yields. The recent manifesting effects of climate change are considered to have aggravated the negative effects of abiotic stresses on plant productivity. On the other hand, the complexity of plant mechanisms controlling important traits and the limited availability of germplasm for tolerance to certain stresses have restricted genetic advances in major crops for increased yields or for improved other traits. However, some level of success has been achieved in understanding crop tolerance to abiotic stresses; for instance, identification of abscisic acid (ABA) receptors (e.g., ABA-responsive element (ABRE) binding protein/ABRE binding factor (AREB/ABF) transcription factors), and other regulons (e.g., WRKYs, MYB/MYCs, NACs, HSFs, bZIPs and nuclear factor-Y (NF-Y)), has shown potential promise to improve plant tolerance to abiotic stresses. Apart from these major regulons, studies on the post-transcriptional regulation of stress-responsive genes have provided additional opportunities for addressing the molecular basis of cellular stress responses in plants. This chapter focuses on the progress in the study of plant tolerance to abiotic stresses, and describes the major tolerance pathways and implicated signaling factors that have been identified, so far. To link basic and applied research, genes and proteins that play functional roles in mitigating abiotic stress damage are summarized and discussed

    Upland Rice Breeding in Uganda: Initiatives and Progress

    Get PDF
    Until recently, there was limited research on breeding upland rice varieties. Moreover, there is an increasing expansion of rice production from traditional irrigated production areas to rain‐fed environments in the East African region, where drought problem is a serious challenge. To date, several initiatives aimed at increasing rice production have been made. Of the initiatives, promotion of upland rice production has been the most important in Uganda, but yield penalty due to drought continued to be a major drawback. This article traces progress in the upland rice breeding that started with improvement of late maturing varieties that had nonpreferred cooking qualities. Initially, introduced lines were evaluated and released. These varieties are the ‘New Rice for Africa’ (NERICA) that had been generated from interspecific crosses involving Oryza glaberrima and Oryza sativa. Several studies to understand the mode of gene action and modified pedigree breeding approaches for drought tolerance were conducted and used to develop new rice varieties. Up to 11 improved upland rice varieties were released and deployed in the country from 2002 to 2011 as a result of this initiative

    Report of the global online survey to identify key knowledge and capacity gaps on diagnostics and surveillance of pests & diseases in targeted countries.

    Get PDF
    An online survey was co-designed in collaboration with CGIAR Germplasm Health Units (GHUs) leaders and social scientists of the Plant Health Initiative (PHI), with the objective to identify and map the key knowledge and capacity gaps on lab/field detection, characterization, and surveillance of P&D of local and regional NPPOs in targeted countries. The questionnaire consisted of 43 open-ended, single and multiple-choice questions. It was divided into three parts: the first includes questions to collect general information (Institution, country, gender, age group, position, scientific level and role). The second part was aimed to learn and identify current capacities, major challenges, capacity building needs of National Plant Protection Organizations (NPPOs) for pest diagnostics and surveillance. The third part was related to specific questions for early- and mid-career scientists (below 45 years old) to inquire into challenges faced by young and women scientists to identify gender-based constraints. The questionnaire was translated into five different languages (English, Arabic, Spanish, French and Vietnamese), and distributed to NPPOs and national institutions across Latin America and the Caribbean (LAC), Africa, Asia and Central and West Asia and North Africa (CWANA). The report summarizes responses from 52 respondents from 35 institutions across 26 countries

    Integrated strategies for durable rice blast resistance in sub-Saharan Africa

    No full text
    Rice is a key food security crop in Africa. The importance of rice has led to increasing country-specific, regional, and multinational efforts to develop germplasm and policy initiatives to boost production for a more food-secure continent. Currently, this critically important cereal crop is predominantly cultivated by small-scale farmers under suboptimal conditions in most parts of sub-Saharan Africa (SSA). Rice blast disease, caused by the fungus Magnaporthe oryzae, represents one of the major biotic constraints to rice production under small-scale farming systems of Africa, and developing durable disease resistance is therefore of critical importance. In this review, we provide an overview of the major advances by a multinational collaborative research effort to enhance sustainable rice production across SSA and how it is affected by advances in regional policy. As part of the multinational effort, we highlight the importance of joint international partnerships in tackling multiple crop production constraints through integrated research and outreach programs. More specifically, we highlight recent progress in establishing international networks for rice blast disease surveillance, farmer engagement, monitoring pathogen virulence spectra, and the establishment of regionally based blast resistance breeding programs. To develop blastresistant, high yielding rice varieties for Africa, we have established a breeding pipeline that utilizes real-Time data of pathogen diversity and virulence spectra, to identify major and minor blast resistance genes for introgression into locally adapted rice cultivars. In addition, the project has developed a package to support sustainable rice production through regular stakeholder engagement, training of agricultural extension officers, and establishment of plant clinics
    corecore