16 research outputs found

    Characterization of fungal biodiversity and communities associated with reef macroalga Sargassum ilicifolium reveals fungal community differentiation according to geographic locality and algal structure

    Get PDF
    Marine environments abound with opportunities to discover new species of fungi even in relatively well-studied ecosystems such as coral reefs. Here, we investigated the fungal communities associated with the canopy forming macroalga Sargassum ilicifolium(Turner) C. Argardh (1820) in Singapore. We collected eight S. ilicifolium thalli from each of eight island locations and separated them into three structures—leaves, holdfast and vesicles. Amplicon sequencing of the fungal internal transcribed spacer 1 (ITS1) and subsequent analyses revealed weak but significant differences in fungal community composition from different structures. Fungal communities were also significantly different among sampling localities, even over relatively small spatial scales (≤ 12 km). Unsurprisingly, all structures from all localities were dominated by unclassified fungi. Our findings demonstrate the potential of marine environments to act as reservoirs of undocumented biodiversity that harbour many novel fungal taxa. These unclassified fungi highlight the need to look beyond terrestrial ecosystems in well-studied regions of the world, and to fully characterize fungal biodiversity in hotspots such as Southeast Asia for better understanding the roles they play in promoting and maintaining life on our planet

    Characterization of hepatitis C RNA-containing particles from human liver by density and size

    Get PDF
    Hepatitis C virus (HCV) particles found in vivo are heterogeneous in density and size, but their detailed characterization has been restricted by the low titre of HCV in human serum. Previously, our group has found that HCV circulates in blood in association with very-low-density lipoprotein (VLDL). Our aim in this study was to characterize HCV RNA-containing membranes and particles in human liver by both density and size and to identify the subcellular compartment(s) where the association with VLDL occurs. HCV was purified by density using iodixanol gradients and by size using gel filtration. Both positive-strand HCV RNA (present in virus particles) and negative-strand HCV RNA (an intermediate in virus replication) were found with densities below 1.08 g ml−1. Viral structural and non-structural proteins, host proteins ApoB, ApoE and caveolin-2, as well as cholesterol, triglyceride and phospholipids were also detected in these low density fractions. After fractionation by size with Superose gel filtration, HCV RNA and viral proteins co-fractionated with endoplasmic reticulum proteins and VLDL. Fractionation on Toyopearl, which separates particles with diameters up to 200 nm, showed that 78 % of HCV RNA from liver was >100 nm in size, with a positive-/negative-strand ratio of 6 : 1. Also, 8 % of HCV RNA was found in particles with diameters between 40 nm and 70 nm and a positive-/negative-strand ratio of 45 : 1. This HCV was associated with ApoB, ApoE and viral glycoprotein E2, similar to viral particles circulating in serum. Our results indicate that the association between HCV and VLDL occurs in the liver

    The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article

    Ecological distribution of protosteloid amoebae in New Zealand

    No full text
    During the period of March 2004 to December 2007, samples of aerial litter (dead but still attached plant parts) and ground litter (dead plant material on the ground) were collected from 81 study sites representing a wide range of latitudes (34°S to 50°S) and a variety of different types of habitats throughout New Zealand (including Stewart Island and the Auckland Islands). The objective was to survey the assemblages of protosteloid amoebae present in this region of the world. Twenty-nine described species of protosteloid amoebae were recorded by making morphological identifications of protosteloid amoebae fruiting bodies on cultured substrates. Of the species observed, Protostelium mycophaga was by far the most abundant and was found in more than half of all samples. Most species were found in fewer than 10% of the samples collected. Seven abundant or common species were found to display significantly increased likelihood for detection in aerial litter or ground litter microhabitats. There was some evidence of a general correlation between environmental factors - annual precipitation, elevation, and distance from the equator (latitude) - and the abundance and richness of protosteloid amoebae. An increase in each of these three factors correlated with a decrease in both abundance and richness. This study provides a thorough survey of the protosteloid amoebae present in New Zealand and adds to a growing body of evidence which suggests several correlations between their broad distributional patterns and environmental factors

    Fungi associated with mesophotic macroalgae from the ‘Au‘au Channel, west Maui are differentiated by host and overlap terrestrial communities

    No full text
    Mesophotic coral ecosystems are an almost entirely unexplored and undocumented environment that likely contains vast reservoirs of undescribed biodiversity. Twenty-four macroalgae samples, representing four genera, were collected from a Hawaiian mesophotic reef at water depths between 65 and 86 m in the ‘Au‘au Channel, Maui, Hawai‘i. Algal tissues were surveyed for the presence and diversity of fungi by sequencing the ITS1 gene using Illumina technology. Fungi from these algae were then compared to previous fungal surveys conducted in Hawaiian terrestrial ecosystems. Twenty-seven percent of the OTUs present on the mesophotic coral ecosystem samples were shared between the marine and terrestrial environment. Subsequent analyses indicated that host species of algae significantly differentiate fungal community composition. This work demonstrates yet another understudied habitat with a moderate diversity of fungi that should be considered when estimating global fungal diversity

    HII 2407: AN ECLIPSING BINARY REVEALED BY K2 OBSERVATIONS OF THE PLEIADES

    Get PDF
    The material presented herein is based upon work supported in 2015 by the National Science Foundation Graduate Research Fellowship under grant No. DGE1144469. T.J.D. gratefully acknowledges support from France Córdova through the Neugebauer Scholarship. This research was partially supported by an appointment to the NASA Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. Support for this work was provided by NASA via grant NNX15AV62G. C.B. acknowledges support from the Alfred P. Sloan Foundation. A.C.C. acknowledges support from STFC grant ST/M001296/1. Funding for WASP comes from consortium universities and from UKs Science and Technology Facilities Council.The star HII 2407 is a member of the relatively young Pleiades star cluster and was previously discovered to be a single-lined spectroscopic binary. It is newly identified here within Kepler/K2 photometric time series data as an eclipsing binary system. Mutual fitting of the radial velocity and photometric data leads to an orbital solution and constraints on fundamental stellar parameters. While the primary has arrived on the main sequence, the secondary is still pre-main sequence and we compare our results for the M/M⊙ and R/R⊙ values with stellar evolutionary models. We also demonstrate that the system is likely to be tidally synchronized. Follow-up infrared spectroscopy is likely to reveal the lines of the secondary, allowing for dynamically measured masses and elevating the system to benchmark eclipsing binary status.Publisher PDFPeer reviewe
    corecore