2,229 research outputs found

    The stellar populations of high-redshift dwarf galaxies

    Full text link
    We use high-resolution (10\approx 10 pc), zoom-in simulations of a typical (stellar mass M1010MM_\star\simeq10^{10}M_\odot) Lyman Break Galaxy (LBG) at z6z\simeq 6 to investigate the stellar populations of its six dwarf galaxy satellites, whose stellar [gas] masses are in the range log(M/M)69\log (M_\star/M_\odot) \simeq 6-9 [log(Mgas/M)4.37.75\log (M_{gas}/M_\odot) \simeq4.3-7.75]. The properties and evolution of satellites show no dependence on the distance from the central massive LBG (<11.5< 11.5 kpc). Instead, their star formation and chemical enrichment histories are tightly connected their stellar (and sub-halo) mass. High-mass dwarf galaxies (M5×108M\rm M_\star \gtrsim 5\times 10^8 M_\odot) experience a long history of star formation, characterised by many merger events. Lower-mass systems go through a series of short star formation episodes, with no signs of mergers; their star formation activity starts relatively late (z7z\approx 7), and it is rapidly quenched by internal stellar feedback. In spite of the different evolutionary patterns, all satellites show a spherical morphology, with ancient and more metal-poor stars located towards the inner regions. All six dwarf satellites experienced high star formation rate (>5Myr1\rm >5\,M_\odot yr ^{-1}) bursts, which can be detected by JWST while targeting high-zz LBGs.Comment: 17 pages, 14 figures. To be published in MNRA

    Response of microchannel plates in ionization mode to single particles and electromagnetic showers

    Full text link
    Hundreds of concurrent collisions per bunch crossing are expected at future hadron colliders. Precision timing calorimetry has been advocated as a way to mitigate the pileup effects and, thanks to their excellent time resolution, microchannel plates (MCPs) are good candidate detectors for this goal. We report on the response of MCPs, used as secondary emission detectors, to single relativistic particles and to electromagnetic showers. Several prototypes, with different geometries and characteristics, were exposed to particle beams at the INFN-LNF Beam Test Facility and at CERN. Their time resolution and efficiency are measured for single particles and as a function of the multiplicity of particles. Efficiencies between 50% and 90% to single relativistic particles are reached, and up to 100% in presence of a large number of particles. Time resolutions between 20ps and 30ps are obtained.Comment: 20 pages, 9 figures. Paper submitted to NIM

    A survey of high-z galaxies: serra simulations

    Get PDF
    We introduce SERRA, a suite of zoom-in high-resolution (1.2 ×104 M⊙, ≃ 25 pc at z = 7.7) cosmological simulations including non-equilibrium chemistry and on-the-fly radiative transfer. The outputs are post-processed to derive galaxy ultraviolet (UV) + far-infrared (FIR) continuum and emission line properties. Results are compared with available multiwavelength data to constrain the physical properties [e.g. star formation rates (SFRs), stellar/gas/dust mass, metallicity] of high-redshift 6 ≲ z ≲ 15 galaxies. This flagship paper focuses on the z = 7.7 sub-sample, including 202 galaxies with stellar mass 107 M⊙ ≲ M⊙ ≲ 5 ×1010 M⊙, and specific star formation rate ranging from sSFR ∼100 Gyr-1 in young, low-mass galaxies to ∼10 Gyr-1 for older, massive ones. At this redshift, SERRA galaxies are typically bursty, i.e. they are located abo v e the Schmidt-Kennicutt relation by a factor κs = 3.03+4.9-1.8, consistent with recent findings for [O III ] and [C II ] emitters at high z. They also show relatively large InfraRed eXcess (IRX = LFIR/LUV) values as a result of their compact/clumpy morphology effectively blocking the stellar UV luminosity. Note that this conclusion might be affected by insufficient spatial resolution at the molecular cloud level. We confirm that early galaxies lie on the standard [C II ] -SFR relation; their observed L[OIII]/L [CII] ≃ 1-10 ratios can be reproduced by a part of the SERRA galaxies without the need of a top-heavy initial mass function and/or anomalous C/O abundances. [O I] line intensities are similar to local ones, making ALMA high-z detections challenging but feasible ( ∼6 h for an SFR of 50 M⊙yr-1)

    High-energy gamma rays emission in coincidence with light charged particles from the32S +74Ge reaction at 210 MeV

    Get PDF
    High-energyγ-rays from the32S+74Ge reaction at 210 MeV bombarding energy were measured in coincidence with light charged particles detected in a large area hodoscope. Experimental results show that energeticγ-rays in coincidence with light charged particles are essentially emitted in the compound nucleus decay. The parameters of the giant dipole resonance (GDR) have been extracted from alineshape analysis of the experimentalγ-ray spectrum. The derived values of mean energyED, widthΓ and strengthS are in good agreement with results from previous experiments on Sn isotopes obtained by using different experimental techniques

    Usefulness and limitations of comprehensive characterization of mRNA splicing profiles in the definition of the clinical relevance of BRCA1/2 variants of uncertain significance

    Get PDF
    Highly penetrant variants of BRCA1/2 genes are involved in hereditary predisposition to breast and ovarian cancer. The detection of pathogenic BRCA variants has a considerable clinical impact, allowing appropriate cancer-risk management. However, a major drawback is represented by the identification of variants of uncertain significance (VUS). Many VUS potentially affect mRNA splicing, making transcript analysis an essential step for the definition of their pathogenicity. Here, we characterize the impact on splicing of ten BRCA1/2 variants. Aberrant splicing patterns were demonstrated for eight variants whose alternative transcripts were fully characterized. Different events were observed, including exon skipping, intron retention, and usage of de novo and cryptic splice sites. Transcripts with premature stop codons or in-frame loss of functionally important residues were generated. Partial/complete splicing effect and quantitative contribution of different isoforms were assessed, leading to variant classification according to Evidence-based Network for the Interpretation of Mutant Alleles (ENIGMA) consortium guidelines. Two variants could be classified as pathogenic and two as likely benign, while due to a partial splicing effect, six variants remained of uncertain significance. The association with an undefined tumor risk justifies caution in recommending aggressive risk-reduction treatments, but prevents the possibility of receiving personalized therapies with potential beneficial effect. This indicates the need for applying additional approaches for the analysis of variants resistant to classification by gene transcript analyses

    Evaporation and fission decay of (132)Ce compound nuclei at E(x)=122 MeV: some limitations of the statistical model

    Get PDF
    Light charged particle (LCP) emission in the evaporation residue (ER) and fusion fission (FF) channels have been studied for the 200 MeV 32S + 100Mo reaction, leading to 132Ce composite nuclei at E x =122 MeV. The main goal was to study the decay of 132 Ce on the basis of an extended set of observables, to get insights on the fission dynamics. The proton and alpha particle energy spectra, their multiplicities, ER-LCP angular correlations, ER and FF angular distributions, and ER and FF cross-sections were measured. The measured observables were compared with the Statistical Model (SM). Using standard parameters, the model was able to reproduce only the pre-scission multiplicities and the FF and ER cross-sections. The calculation was observed to strongly overestimate the proton and alpha particle multiplicities in the ER channel. Disagreements were also observed for the ER-LCP correlations, the LCP energy spectra and the ER angular distribution. By varying the SM input parameters over a wide range of values, it is shown that it is not possible to reproduce all the observables simultaneously with a unique set of parameters. The inadequacy of the model in reproducing the ER particle multiplicities is also observed analysing data from the literature for other systems in the A ≈ 150 and E x ≈ 100−200 MeV region. These results indicate serious limitations about the use of the SM in extracting information on fission dynamics

    High intensity neutrino oscillation facilities in Europe

    Get PDF
    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ− beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive
    corecore