9 research outputs found

    Predicting species and community responses to global change using structured expert judgement : an Australian mountain ecosystems case study

    Get PDF
    Conservation managers are under increasing pressure to make decisions about the allocation of finite resources to protect biodiversity under a changing climate. However, the impacts of climate and global change drivers on species are outpacing our capacity to collect the empirical data necessary to inform these decisions. This is particularly the case in the Australian Alps which has already undergone recent changes in climate and experienced more frequent large-scale bushfires. In lieu of empirical data, we used a structured expert elicitation method (the IDEA protocol) to estimate the abundance and distribution of nine vegetation groups and 89 Australian alpine and subalpine species by the year 2050. Experts predicted that most alpine vegetation communities would decline in extent by 2050; only woodlands and heathlands are predicted to increase in extent. Predicted species-level responses for alpine plants and animals were highly variable and uncertain. In general, alpine plants spanned the range of possible responses, with some expected to increase, decrease or not change in cover. By contrast, almost all animal species are predicted to decline or not change in abundance or elevation range; more species with water-centric life-cycles are expected to decline in abundance than other species. While long-term ecological data will always be the gold-standard in informing the future of biodiversity, the method and outcomes outlined here provide a pragmatic and coherent basis upon which to start informing conservation policy and management in the face of rapid change and paucity of data

    Plant trait and vegetation data along a 1314 m elevation gradient with fire history in Puna grasslands, Perú

    Get PDF
    Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families

    Predicting species and community responses to global change using structured expert judgement: An Australian mountain ecosystems case study

    No full text
    Conservation managers are under increasing pressure to make decisions about the allocation of finite resources to protect biodiversity under a changing climate. However, the impacts of climate and global change drivers on species are outpacing our capacity to collect the empirical data necessary to inform these decisions. This is particularly the case in the Australian Alps which has already undergone recent changes in climate and experienced more frequent large-scale bushfires. In lieu of empirical data, we used a structured expert elicitation method (the IDEA protocol) to estimate the abundance and distribution of nine vegetation groups and 89 Australian alpine and subalpine species by the year 2050. Experts predicted that most alpine vegetation communities would decline in extent by 2050; only woodlands and heathlands are predicted to increase in extent. Predicted species-level responses for alpine plants and animals were highly variable and uncertain. In general, alpine plants spanned the range of possible responses, with some expected to increase, decrease or not change in cover. By contrast, almost all animal species are predicted to decline or not change in abundance or elevation range; more species with water-centric life-cycles are expected to decline in abundance than other species. While long-term ecological data will always be the gold-standard in informing the future of biodiversity, the method and outcomes outlined here provide a pragmatic and coherent basis upon which to start informing conservation policy and management in the face of rapid change and paucity of data

    The role of plant functional groups mediating climate impacts on carbon and biodiversity of alpine grasslands

    Get PDF
    Plant removal experiments allow assessment of the role of biotic interactions among species or functional groups in community assembly and ecosystem functioning. When replicated along climate gradients, they can assess changes in interactions among species or functional groups with climate. Across twelve sites in the Vestland Climate Grid (VCG) spanning 4°C in growing season temperature and 2000 mm in mean annual precipitation across boreal and alpine regions of Western Norway, we conducted a fully factorial plant functional group removal experiment (graminoids, forbs, bryophytes). Over six years, we recorded biomass removed, soil microclimate, plant community composition and structure, seedling recruitment, ecosystem carbon fuxes, and refectance in 384 experimental and control plots. The dataset consists of 5,412 biomass records, 360 species-level biomass records, 1,084,970 soil temperature records, 4,771 soil moisture records, 17,181 plant records covering 206 taxa, 16,656 seedling records, 3,696 ecosystem carbon fux measurements, and 1,244 refectance measurements. The data can be combined with longer-term climate data and plant population, community, ecosystem, and functional trait data collected within the VCG.publishedVersio

    Winters are changing:snow effects on Arctic and alpine tundra ecosystems

    No full text
    Abstract Snow is an important driver of ecosystem processes in cold biomes. Snow accumulation determines ground temperature, light conditions, and moisture availability during winter. It also affects the growing season’s start and end, and plant access to moisture and nutrients. Here, we review the current knowledge of the snow cover’s role for vegetation, plant-animal interactions, permafrost conditions, microbial processes, and biogeochemical cycling. We also compare studies of natural snow gradients with snow experimental manipulation studies to assess time scale difference of these approaches. The number of tundra snow studies has increased considerably in recent years, yet we still lack a comprehensive overview of how altered snow conditions will affect these ecosystems. Specifically, we found a mismatch in the timing of snowmelt when comparing studies of natural snow gradients with snow manipulations. We found that snowmelt timing achieved by snow addition and snow removal manipulations (average 7.9 days advance and 5.5 days delay, respectively) were substantially lower than the temporal variation over natural spatial gradients within a given year (mean range 56 days) or among years (mean range 32 days). Differences between snow study approaches need to be accounted for when projecting snow dynamics and their impact on ecosystems in future climates

    Plant trait and vegetation data along a 1314 m elevation gradient with fire history in Puna grasslands, Perú

    No full text
    International audienceAlpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families. © The Author(s) 2024

    Plant trait and vegetation data along a 1314 m elevation gradient with fire history in Puna grasslands, Perú

    Get PDF
    Abstract Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families

    AusTraits: a curated plant trait database for the Australian flora

    No full text
    INTRODUCTION AusTraits is a transformative database, containing measurements on the traits of Australia’s plant taxa, standardised from hundreds of disconnected primary sources. So far, data have been assembled from > 250 distinct sources, describing > 400 plant traits and > 26,000 taxa. To handle the harmonising of diverse data sources, we use a reproducible workflow to implement the various changes required for each source to reformat it suitable for incorporation in AusTraits. Such changes include restructuring datasets, renaming variables, changing variable units, changing taxon names. While this repository contains the harmonised data, the raw data and code used to build the resource are also available on the project’s GitHub repository, http://traitecoevo.github.io/austraits.build/. Further information on the project is available in the associated publication and at the project website austraits.org. Falster, Gallagher et al (2021) AusTraits, a curated plant trait database for the Australian flora. Scientific Data 8: 254, https://doi.org/10.1038/s41597-021-01006-6 CONTRIBUTORS The project is jointly led by Dr Daniel Falster (UNSW Sydney), Dr Rachael Gallagher (Western Sydney University), Dr Elizabeth Wenk (UNSW Sydney), and Dr Hervé Sauquet (Royal Botanic Gardens and Domain Trust Sydney), with input from > 300 contributors from over > 100 institutions (see full list above). The project was initiated by Dr Rachael Gallagher and Prof Ian Wright while at Macquarie University. We are grateful to the following institutions for contributing data Australian National Botanic Garden, Brisbane Rainforest Action and Information Network, Kew Botanic Gardens, National Herbarium of NSW, Northern Territory Herbarium, Queensland Herbarium, Western Australian Herbarium, South Australian Herbarium, State Herbarium of South Australia, Tasmanian Herbarium, Department of Environment, Land, Water and Planning, Victoria. AusTraits has been supported by investment from the Australian Research Data Commons (ARDC), via their “Transformative data collections” (https://doi.org/10.47486/TD044) and “Data Partnerships” (https://doi.org/10.47486/DP720) programs; fellowship grants from Australian Research Council to Falster (FT160100113), Gallagher (DE170100208) and Wright (FT100100910), a grant from Macquarie University to Gallagher. The ARDC is enabled by National Collaborative Research Investment Strategy (NCRIS). ACCESSING AND USE OF DATA The compiled AusTraits database is released under an open source licence (CC-BY), enabling re-use by the community. A requirement of use is that users cite the AusTraits resource paper, which includes all contributors as co-authors: Falster, Gallagher et al (2021) AusTraits, a curated plant trait database for the Australian flora. Scientific Data 8: 254, https://doi.org/10.1038/s41597-021-01006-6 In addition, we encourage users you to cite the original data sources, wherever possible. Note that under the license data may be redistributed, provided the attribution is maintained. The downloads below provide the data in two formats: austraits-3.0.2.zip: data in plain text format (.csv, .bib, .yml files). Suitable for anyone, including those using Python. austraits-3.0.2.rds: data as compressed R object. Suitable for users of R (see below). Both objects contain all the data and relevant meta-data. AUSTRAITS R PACKAGE For R users, access and manipulation of data is assisted with the austraits R package. The package can both download data and provides examples and functions for running queries. STRUCTURE OF AUSTRAITS The compiled AusTraits database has the following main components: austraits ├── traits ├── sites ├── contexts ├── methods ├── excluded_data ├── taxanomic_updates ├── taxa ├── definitions ├── contributors ├── sources └── build_info These elements include all the data and contextual information submitted with each contributed datasets. A schema and definitions for the database are given in the file/component definitions, available within the download. The file dictionary.html provides the same information in textual format. Full details on each of these components and columns are contained within the definition. Similar information is available at http://traitecoevo.github.io/austraits.build/articles/Trait_definitions.html and http://traitecoevo.github.io/austraits.build/articles/austraits_database_structure.html. CONTRIBUTING We envision AusTraits as an on-going collaborative community resource that: Increases our collective understanding the Australian flora; and Facilitates accumulation and sharing of trait data; Builds a sense of community among contributors and users; and Aspires to fully transparent and reproducible research of the highest standard. As a community resource, we are very keen for people to contribute. Assembly of the database is managed on GitHub at traitecoevo/austraits.build. Here are some of the ways you can contribute: Reporting Errors: If you notice a possible error in AusTraits, please post an issue on GitHub. Refining documentation: We welcome additions and edits that make using the existing data or adding new data easier for the community. Contributing new data: We gladly accept new data contributions to AusTraits. See full instructions on how to contribute at http://traitecoevo.github.io/austraits.build/articles/contributing_data.html

    AusTraits, a curated plant trait database for the Australian flora

    Get PDF
    International audienceWe introduce the austraits database-a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual-and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge
    corecore