28 research outputs found

    Comparison of Gene Repertoires and Patterns of Evolutionary Rates in Eight Aphid Species That Differ by Reproductive Mode

    Get PDF
    In theory, the loss of sexual reproduction is expected to result in the accumulation of deleterious mutations. In aphids, two main types of life cycle, cyclic and obligate parthenogenesis, represent respectively “sexual” and “asexual” reproductive modes. We used the complete pea aphid genome and previously published expressed sequence tags (ESTs) from two other aphid species. In addition, we obtained 100,000 new ESTs from five more species. The final set comprised four sexual and four asexual aphid species and served to test the influence of the reproductive mode on the evolutionary rates of genes. We reconstructed coding sequences from ESTs and annotated these genes, discovering a novel peptide gene family that appears to be among the most highly expressed transcripts from several aphid species. From 203 genes found to be 1:1 orthologs among the eight species considered, we established a species tree that partly conflicted with taxonomy (for Myzus ascalonicus). We then used this topology to evaluate the dynamics of evolutionary rates and mutation accumulation in the four sexual and four asexual taxa. No significant increase of the nonsynonymous to synonymous ratio or of nonsynonymous mutation numbers was found in any of the four branches for asexual taxa. We however found a significant increase of the synonymous rate in the branch leading to the asexual species Rhopalosiphum maidis, which could be due to a change in the mutation rate or to an increased number of generations implied by its change of life cycle

    Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition

    Get PDF
    A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009-2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world's planktonic ecosystems

    Metagenomes of the Picoalga Bathycoccus from the Chile Coastal Upwelling

    Get PDF
    Among small photosynthetic eukaryotes that play a key role in oceanic food webs, picoplanktonic Mamiellophyceae such as Bathycoccus, Micromonas, and Ostreococcus are particularly important in coastal regions. By using a combination of cell sorting by flow cytometry, whole genome amplification (WGA), and 454 pyrosequencing, we obtained metagenomic data for two natural picophytoplankton populations from the coastal upwelling waters off central Chile. About 60% of the reads of each sample could be mapped to the genome of Bathycoccus strain from the Mediterranean Sea (RCC1105), representing a total of 9 Mbp (sample T142) and 13 Mbp (sample T149) of non-redundant Bathycoccus genome sequences. WGA did not amplify all regions uniformly, resulting in unequal coverage along a given chromosome and between chromosomes. The identity at the DNA level between the metagenomes and the cultured genome was very high (96.3% identical bases for the three larger chromosomes over a 360 kbp alignment). At least two to three different genotypes seemed to be present in each natural sample based on read mapping to Bathycoccus RCC1105 genome

    Patterns of Sequence Divergence and Evolution of the S1 Orthologous Regions between Asian and African Cultivated Rice Species

    Get PDF
    A strong postzygotic reproductive barrier separates the recently diverged Asian and African cultivated rice species, Oryza sativa and O. glaberrima. Recently a model of genetic incompatibilities between three adjacent loci: S1A, S1 and S1B (called together the S1 regions) interacting epistatically, was postulated to cause the allelic elimination of female gametes in interspecific hybrids. Two candidate factors for the S1 locus (including a putative F-box gene) were proposed, but candidates for S1A and S1B remained undetermined. Here, to better understand the basis of the evolution of regions involved in reproductive isolation, we studied the genic and structural changes accumulated in the S1 regions between orthologous sequences. First, we established an 813 kb genomic sequence in O. glaberrima, covering completely the S1A, S1 and the majority of the S1B regions, and compared it with the orthologous regions of O. sativa. An overall strong structural conservation was observed, with the exception of three isolated regions of disturbed collinearity: (1) a local invasion of transposable elements around a putative F-box gene within S1, (2) the multiple duplication and subsequent divergence of the same F-box gene within S1A, (3) an interspecific chromosomal inversion in S1B, which restricts recombination in our O. sativa×O. glaberrima crosses. Beside these few structural variations, a uniform conservative pattern of coding sequence divergence was found all along the S1 regions. Hence, the S1 regions have undergone no drastic variation in their recent divergence and evolution between O. sativa and O. glaberrima, suggesting that a small accumulation of genic changes, following a Bateson-Dobzhansky-Muller (BDM) model, might be involved in the establishment of the sterility barrier. In this context, genetic incompatibilities involving the duplicated F-box genes as putative candidates, and a possible strengthening step involving the chromosomal inversion might participate to the reproductive barrier between Asian and African rice species

    An Expressed Sequence Tag collection from the male antennae of the Noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nocturnal insects such as moths are ideal models to study the molecular bases of olfaction that they use, among examples, for the detection of mating partners and host plants. Knowing how an odour generates a neuronal signal in insect antennae is crucial for understanding the physiological bases of olfaction, and also could lead to the identification of original targets for the development of olfactory-based control strategies against herbivorous moth pests. Here, we describe an Expressed Sequence Tag (EST) project to characterize the antennal transcriptome of the noctuid pest model, <it>Spodoptera littoralis</it>, and to identify candidate genes involved in odour/pheromone detection.</p> <p>Results</p> <p>By targeting cDNAs from male antennae, we biased gene discovery towards genes potentially involved in male olfaction, including pheromone reception. A total of 20760 ESTs were obtained from a normalized library and were assembled in 9033 unigenes. 6530 were annotated based on BLAST analyses and gene prediction software identified 6738 ORFs. The unigenes were compared to the <it>Bombyx mori </it>proteome and to ESTs derived from Lepidoptera transcriptome projects. We identified a large number of candidate genes involved in odour and pheromone detection and turnover, including 31 candidate chemosensory receptor genes, but also genes potentially involved in olfactory modulation.</p> <p>Conclusions</p> <p>Our project has generated a large collection of antennal transcripts from a Lepidoptera. The normalization process, allowing enrichment in low abundant genes, proved to be particularly relevant to identify chemosensory receptors in a species for which no genomic data are available. Our results also suggest that olfactory modulation can take place at the level of the antennae itself. These EST resources will be invaluable for exploring the mechanisms of olfaction and pheromone detection in <it>S. littoralis</it>, and for ultimately identifying original targets to fight against moth herbivorous pests.</p

    Long-range and targeted ectopic recombination between the two homeologous chromosomes 11 and 12 in Oryza species

    No full text
    Whole genome duplication (WGD) and subsequent evolution of gene pairs have been shown to have shaped the present day genomes of most, if not all, plants and to have played an essential role in the evolution of many eukaryotic genomes. Analysis of the rice (Oryza sativa ssp. japonica) genome sequence suggested an ancestral WGD ∌50-70 Ma common to all cereals and a segmental duplication between chromosomes 11 and 12 as recently as 5 Ma. More recent studies based on coding sequences have demonstrated that gene conversion is responsible for the high sequence conservation which suggested such a recent duplication. We previously showed that gene conversion has been a recurrent process throughout the Oryza genus and in closely related species and that orthologous duplicated regions are also highly conserved in other cereal genomes. We have extended these studies to compare megabase regions of genomic (coding and noncoding) sequences between two cultivated (O. sativa, Oryza glaberrima) and one wild (Oryza brachyantha) rice species using a novel approach of topological incongruency. The high levels of intraspecies conservation of both gene and nongene sequences, particularly in O. brachyantha, indicate long-range conversion events less than 4 Ma in all three species. These observations demonstrate megabase-scale conversion initiated within a highly rearranged region located at ∌2.1 Mb from the chromosome termini and emphasize the importance of gene conversion in cereal genome evolution. The Author 2011. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved

    BAC-end sequences analysis provides first insights into coffee (Coffea canephora P.) genome composition and evolution

    No full text
    Coffee is one of the world's most important agricultural commodities. Coffee belongs to the Rubiaceae family in the euasterid I clade of dicotyledonous plants, to which the Solanaceae family also belongs. Two bacterial artificial chromosome (BAC) libraries of a homozygous doubled haploid plant of Coffea canephora were constructed using two enzymes, HindIII and BstYI. A total of 134,827 high quality BAC-end sequences (BESs) were generated from the 73,728 clones of the two libraries, and 131,412 BESs were conserved for further analysis after elimination of chloroplast and mitochondrial sequences. This corresponded to almost 13 % of the estimated size of the C. canephora genome. 6.7 % of BESs contained simple sequence repeats, the most abundant (47.8 %) being mononucleotide motifs. These sequences allow the development of numerous useful marker sites. Potential transposable elements (TEs) represented 11.9 % of the full length BESs. A difference was observed between the BstYI and HindIII libraries (14.9 vs. 8.8 %). Analysis of BESs against known coding sequences of TEs indicated that 11.9 % of the genome corresponded to known repeat sequences, like for other flowering plants. The number of genes in the coffee genome was estimated at 41,973 which is probably overestimated. Comparative genome mapping revealed that microsynteny was higher between coffee and grapevine than between coffee and tomato or Arabidopsis. BESs constitute valuable resources for the first genome wide survey of coffee and provide new insights into the composition and evolution of the coffee genome
    corecore