42 research outputs found

    Combination of complex-based and magnitude-based multiecho water-fat separation for accurate quantification of fat-fraction

    Get PDF
    Multipoint water-fat separation techniques rely on different water-fat phase shifts generated at multiple echo times to decompose water and fat. Therefore, these methods require complex source images and allow unambiguous separation of water and fat signals. However, complex-based water-fat separation methods are sensitive to phase errors in the source images, which may lead to clinically important errors. An alternative approach to quantify fat is through magnitude-based methods that acquire multiecho magnitude images. Magnitude-based methods are insensitive to phase errors, but cannot estimate fat-fraction greater than 50%. In this work, we introduce a water-fat separation approach that combines the strengths of both complex and magnitude reconstruction algorithms. A magnitude-based reconstruction is applied after complex-based water-fat separation to removes the effect of phase errors. The results from the two reconstructions are then combined. We demonstrate that using this hybrid method, 0-100% fat-fraction can be estimated with improved accuracy at low fat-fractions. Magn Reson Med, 2011. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc

    Tackling Systematic Errors in Quantum Logic Gates with Composite Rotations

    Get PDF
    We describe the use of composite rotations to combat systematic errors in single qubit quantum logic gates and discuss three families of composite rotations which can be used to correct off-resonance and pulse length errors. Although developed and described within the context of NMR quantum computing these sequences should be applicable to any implementation of quantum computation.Comment: 6 pages RevTex4 including 4 figures. Will submit to Phys. Rev.

    T1 independent, T2* corrected chemical shift based fat-water separation with multi-peak fat spectral modeling is an accurate and precise measure of hepatic steatosis

    Get PDF
    Purpose: To determine the precision and accuracy of hepatic fat-fraction measured with a chemical shift-based MRI fat-water separation method, using single-voxel MR spectroscopy (MRS) as a reference standard. Materials and Methods: In 42 patients, two repeated measurements were made using a T 1-independent, T2 *-corrected chemical shift-based fat-water separation method with multi-peak spectral modeling of fat, and T 2-corrected single voxel MR spectroscopy. Precision was assessed through calculation of Bland-Altman plots and concordance correlation intervals. Accuracy was assessed through linear regression between MRI and MRS. Sensitivity and specificity of MRI fat-fractions for diagnosis of steatosis using MRS as a reference standard were also calculated. Results: Statistical analysis demonstrated excellent precision of MRI and MRS fat-fractions, indicated by 95% confidence intervals (units of absolute percent) of [-2.66%,2.64%] for single MRI ROI measurements, [-0.81%,0.80%] for averaged MRI ROI, and [-2.70%,2.87%] for single-voxel MRS. Linear regression between MRI and MRS indicated that the MRI method is highly accurate. Sensitivity and specificity for detection of steatosis using averaged MRI ROI were 100% and 94%, respectively. The relationship between hepatic fat-fraction and body mass index was examined. Conclusion: Fat-fraction measured with T1-independent T 2*-corrected MRI and multi-peak spectral modeling of fat is a highly precise and accurate method of quantifying hepatic steatosis. © 2011 Wiley-Liss, Inc

    An horizon scan of biogeography

    Get PDF
    The opportunity to reflect broadly on the accomplishments, prospects, and reach of a field may present itself relatively infrequently. Each biennial meeting of the International Biogeography Society showcases ideas solicited and developed largely during the preceding year, by individuals or teams from across the breadth of the discipline. Here, we highlight challenges, developments, and opportunities in biogeography from that biennial synthesis. We note the realized and potential impact of rapid data accumulation in several fields, a renaissance for inter-disciplinary research, the importance of recognizing the evolution-ecology continuum across spatial and temporal scales and at different taxonomic, phylogenetic and functional levels, and re-exploration of classical assumptions and hypotheses using new tools. However, advances are taxonomically and geographically biased, and key theoretical frameworks await tools to handle, or strategies to simplify, the biological complexity seen in empirical systems. Current threats to biodiversity require unprecedented integration of knowledge and development of predictive capacity that may enable biogeography to unite its descriptive and hypothetico-deductive branches and establish a greater role within and outside academia

    Anomalous Pseudoscalar-Photon Vertex In and Out of Equilibrium

    Full text link
    The anomalous pseudoscalar-photon vertex is studied in real time in and out of equilibrium in a constituent quark model. The goal is to understand the in-medium modifications of this vertex, exploring the possibility of enhanced isospin breaking by electromagnetic effects as well as the formation of neutral pion condensates in a rapid chiral phase transition in peripheral, ultrarelativistic heavy-ion collisions. In equilibrium the effective vertex is afflicted by infrared and collinear singularities that require hard thermal loop (HTL) and width corrections of the quark propagator. The resummed effective equilibrium vertex vanishes near the chiral transition in the chiral limit. In a strongly out of equilibrium chiral phase transition we find that the chiral condensate drastically modifies the quark propagators and the effective vertex. The ensuing dynamics for the neutral pion results in a potential enhancement of isospin breaking and the formation of π0\pi^0 condensates. While the anomaly equation and the axial Ward identity are not modified by the medium in or out of equilibrium, the effective real-time pseudoscalar-photon vertex is sensitive to low energy physics.Comment: Revised version to appear in Phys. Rev. D. 42 pages, 4 figures, uses Revte

    The nuclear envelope proteome differs notably between tissues

    Get PDF
    One hypothesis to explain how mutations in the same nuclear envelope proteins yield pathologies focused in distinct tissues is that as yet unidentified tissue-specific partners mediate the disease pathologies. The nuclear envelope proteome was recently determined from leukocytes and muscle. Here the same methodology is applied to liver and a direct comparison of the liver, muscle and leukocyte data sets is presented. At least 74 novel transmembrane proteins identified in these studies have been directly confirmed at the nuclear envelope. Within this set, RT-PCR, western blot and staining of tissue cryosections confirms that the protein complement of the nuclear envelope is clearly distinct from one tissue to another. Bioinformatics reveals similar divergence between tissues across the larger data sets. For proteins acting in complexes according to interactome data, the whole complex often exhibited the same tissue-specificity. Other tissue-specific nuclear envelope proteins identified were known proteins with functions in signaling and gene regulation. The high tissue specificity in the nuclear envelope likely underlies the complex disease pathologies and argues that all organelle proteomes warrant re-examination in multiple tissues

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study

    Get PDF
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexit

    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study.

    Get PDF
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10(-8)) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10(-8)). The top IBC association for SBP was rs2012318 (P= 6.4 × 10(-6)) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10(-6)) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity

    Measurement of W± and Z-boson production cross sections in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    See paper for full list of authors - 17 pages plus author list + cover pages (34 pages total), 5 figures, 3 tables, submitted to Phys. Lett. B, All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2015-03/International audienceMeasurements of the W±→ℓ±ΜW^{\pm} \rightarrow \ell^{\pm} \nu and Z→ℓ+ℓ−Z \rightarrow \ell^+ \ell^- production cross sections (where ℓ±=e±,Ό±\ell^{\pm}=e^{\pm},\mu^{\pm}) in proton-proton collisions at s=13\sqrt{s}=13 TeV are presented using data recorded by the ATLAS experiment at the Large Hadron Collider, corresponding to a total integrated luminosity of 81 pb−1^{-1}. The total inclusive W±W^{\pm}-boson production cross sections times the single-lepton-flavour branching ratios are σW+tot=11.78±0.02(stat)±0.32(sys)±0.59(lumi)\sigma_{W^+}^{tot}= 11.78 \pm 0.02 (stat) \pm 0.32 (sys) \pm 0.59 (lumi) nb and σW−tot=8.75±0.02(stat)±0.24(sys)±0.44(lumi)\sigma_{W^-}^{tot} = 8.75 \pm 0.02 (stat) \pm 0.24 (sys) \pm 0.44 (lumi) nb for W+W^+ and W−W^-, respectively. The total inclusive ZZ-boson production cross section times leptonic branching ratio, within the invariant mass window 66<mℓℓ<11666 < m_{\ell\ell} < 116 GeV, is σZtot=1.97±0.01(stat)±0.04(sys)±0.10(lumi)\sigma_{Z}^{tot} = 1.97 \pm 0.01 (stat) \pm 0.04 (sys) \pm 0.10 (lumi) nb. The W+W^+, W−W^-, and ZZ-boson production cross sections and cross-section ratios within a fiducial region defined by the detector acceptance are also measured. The cross-section ratios benefit from significant cancellation of experimental uncertainties, resulting in σW+fid/σW−fid=1.295±0.003(stat)±0.010(sys)\sigma_{W^+}^{fid}/\sigma_{W^-}^{fid} = 1.295 \pm 0.003 (stat) \pm 0.010 (sys) and σW±fid/σZfid=10.31±0.04(stat)±0.20(sys)\sigma_{W^{\pm}}^{fid}/\sigma_{Z}^{fid} = 10.31 \pm 0.04 (stat) \pm 0.20 (sys). Theoretical predictions, based on calculations accurate to next-to-next-to-leading order for quantum chromodynamics and next-to-leading order for electroweak processes and which employ different parton distribution function sets, are compared to these measurements
    corecore