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Abstract 

 

One hypothesis to explain how mutations in the same nuclear envelope 

proteins yield pathologies focused in distinct tissues is that as yet 

unidentified tissue-specific partners mediate the disease pathologies. The 

nuclear envelope proteome was recently determined from leukocytes and 

muscle. Here the same methodology is applied to liver and a direct 

comparison of the liver, muscle, and leukocyte datasets is presented. At least 

74 novel transmembrane proteins identified in these studies have been 

directly confirmed at the nuclear envelope. Within this set, RT-PCR, Western 

blot, and staining of tissue cryosections confirms that the protein 

complement of the nuclear envelope is clearly distinct from one tissue to 

another. Bioinformatics reveals similar divergence between tissues across the 

larger datasets. For proteins acting in complexes according to interactome 

data, the whole complex often exhibited the same tissue-specificity. Other 

tissue-specific nuclear envelope proteins identified were known proteins with 

functions in signaling and gene regulation. The high tissue specificity in the 
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nuclear envelope likely underlies the complex disease pathologies and argues 

that all organelle proteomes warrant re-examination in multiple tissues. 

 

Keywords: tissue-specific; nuclear membrane; proteomics; organelle proteome; 

transmembrane; signalling; nuclear envelopathies 
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Introduction 

 

The nuclear envelope (NE) is a double membrane system consisting of the nuclear 

lamina, inner and outer nuclear membranes, and nuclear pore complexes 1. 

Though historically viewed as little more than a barrier and gatekeeper, recent 

years have linked NE proteins to functions as disparate as DNA damage repair 2, 

cell cycle regulation 3, and cell mobility 4. This range of functions is enabled 

because NE transmembrane proteins (NETs) in the outer membrane connect to 

the cytoskeleton and NETs/ lamins in the inner membrane interact with chromatin 

and gene regulatory proteins. Mutations in lamins and NETs, often collectively 

referred to as the lamina, have been linked to distinct diseases that each exhibit 

tissue-specific pathologies ranging from muscular dystrophies to neuropathy, 

dermopathy, lipodystrophy, bone disorders, and progeroid ageing syndromes 1, 5. 

As the proteins mutated in these disorders are all widely expressed it has been 

proposed that as yet unidentified tissue-specific partners might mediate the tissue 

preferences in pathology 1, 6, 7. 

Cellular organelles, in general, are thought to be relatively invariant in their 

integral protein composition, with the exception of the complement of tissue-
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specific proteins being synthesized in the ER and functioning at the plasma 

membrane. The first indication that this may not be the case was a proteomic 

observation that mitochondria isolated from four different mouse tissues 

exhibited differences in their protein complement 8. Despite the significance of 

this finding, other organelles have not been similarly analyzed for such tissue 

specificity. Two recent proteomic determinations of blood leukocyte and muscle 

NE proteomes using identical methodologies each identified some novel proteins 

previously not reported at the NE 9, 10. Some differences could be due to tissue- 

and cell-type specificity while others could reflect differences in the 

methodologies used from earlier studies. Here, we have employed the same 

methodology used for the blood leukocyte and muscle NEs to determine the liver 

NE proteome so that all three tissues could be directly compared.  

 Comparing these NE proteomes, we find surprisingly few proteins common 

to all three tissues. Tissue differences determined by direct testing of a subset of 

confirmed NETs by antibody staining of tissue cryosections, tissue Western blot 

and tissue RT-PCR reflected the tissue differences indicated by the proteome 

dataset comparison. Proteomic tissue specificity in the larger datasets also 

correlated with expression data from a large-scale transcriptome study. 
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Furthermore, comparison of the proteome data with interactome data revealed 

that proteins indicated to be in complexes often segregated together into 

particular tissues. Among the subset of proteins with known functions identified 

here at the NE, Gene Ontology (GO) functional assignments suggest that the 

observed tissue differences in NE composition contribute to signaling and gene 

regulation. It is reasonable to speculate that many among the hundreds of 

previously uncharacterized proteins identified in the NE will have similarly 

important tissue-specific contributions. 
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Results 

 

Nuclear Envelope Proteomics 

 

Many novel NE proteins were identified in two recent proteomic analyses of rat 

muscle and human peripheral blood leukocytes 9, 10 that were not identified in 

earlier studies of rat liver 11 or mouse neuronal tissue culture cells 12. This finding 

could indicate that the NE proteome differs significantly between tissues or could 

reflect a combination of moderate tissue differences together with improvements 

in the mass spectrometry approaches used and/ or a tendency for different 

contaminants to co-fractionate in a particular tissue. To distinguish these 

possibilities a new analysis of rat liver NEs was engaged that used the same 

approaches as the recent muscle and leukocyte studies. 

Nuclei were first isolated from other cellular organelles by floating 

contaminating membranes on sucrose, then chromatin was digested and nuclear 

contents extracted with salt washes and removed by floating on sucrose to 

generate crude NEs (Fig. 1A). These were further purified by alkali or detergent 

extraction prior to mass spectrometry because isolated NEs at this stage clearly 
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have some chromatin attached and some contamination from other cellular 

organelles as determined by electron microscopy (Fig. 1B-D). Nonetheless, even 

at this stage, the fractionation had effectively separated the NEs from most 

expected contaminants as judged by the fact that the ER marker calreticulin and 

the mitochondrial marker porin were undetectable by Western (Fig. 1E,F). 

The reason that the ER would be expected to provide the principal 

transmembrane protein contaminants is because the ER membrane is continuous 

with the outer nuclear membrane 13. Therefore, some ER proteins will normally 

reside also in the outer nuclear membrane, or, viewed conversely, some NETs 

likely double as ER proteins. This has already been demonstrated for the NET 

emerin, which concentrates both in the inner nuclear membrane and in the 

peripheral ER where it functions in connecting the centrosome to the outer 

nuclear membrane 14. To better distinguish NE-specific proteins a separate 

microsomal membrane fraction 15 was prepared from the tissue for comparison. 

NETs enriched in the NE datasets over the microsome datasets could be 

considered as higher probability candidate NE proteins, though other NETs could 

still be important because it is estimated that ~40% of proteins occupy multiple 

cellular compartments 16. Thus NE proteins identified were considered in total or 
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as enriched in NEs >5 fold over microsomes based on normalized spectral counts 

17, 18.  

 These NEs and microsomes were then extracted with alkali or detergent 

treatments to remove many of these presumed contaminants prior to mass 

spectrometry analysis (Fig. 1A). One aliquot of NEs was extracted with 0.1 M 

NaOH because this breaks most protein-protein interactions without solubilizing 

membranes and so enriches for transmembrane proteins. Another aliquot was 

extracted with 500 mM NaCl/ 1% -octylglucoside because the detergent will 

draw the membrane lipids into micelles without perturbing the intermediate 

filament lamin polymer and so enriches for proteins tightly associated with the 

lamin polymer. Both aliquots were separately analyzed because some well-

characterized NETs distribute to one or the other fraction 11, 12. Each extracted 

fraction was digested with trypsin and soluble peptides were equally divided for 

use in 4 direct replicate Multidimensional Protein Identification Technology 

(MudPIT) 19, 20 runs. Remaining insoluble material was further digested with 

proteinase K at high pH and split for an additional two runs (Fig. S1; Table S1).  

The use of both different extraction and different digestion conditions 

increased the total number of NETs identified. The separate analysis of salt/ 
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detergent extracted NEs resulted in the recovery of 34 additional transmembrane 

proteins over the NaOH extracted NEs (a 6% increase) using the NE-enriched 

dataset (Fig. 2A, top Venn diagram). A similar increase in identified NETs was 

obtained (5.6%) when including NETs also <5-fold enriched over microsomes. The 

sequential digests (trypsin, then proteinase K) were engaged because the NE 

lamina is defined largely by its insolubility, consisting of both intermediate 

filament and transmembrane proteins. Thus it was anticipated that associated 

proteins would be missed that were impervious to the trypsin digestion due to 

hydrophobic aggregation. This anticipation was justified because 62 additional 

transmembrane proteins (an 11.5% increase) were uniquely identified in the 

proteinase K fraction and not in the trypsin fraction using the NE-enriched 

dataset (Fig. 2A, bottom Venn diagram). This approach would thus likely benefit 

other proteomic analyses of transmembrane proteins. 

Similarly, engaging multiple replicate runs enabled more comprehensive 

identification of all proteins in the fractions. The total number of proteins 

identified from six salt/ detergent extracted NE runs was nearly 50% higher than 

the number identified in any individual run (Fig. 2B). As run number increased the 

number of new identifications dropped, reaching a plateau by ~5 runs where it 
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could be estimated that roughly all proteins in the fractions had been identified. 

Whereas the earlier liver study that engaged only one run for each extracted 

fraction identified 1150 proteins 11, this new liver study identified 2921 proteins 

(Table S2). 

The finding that so many replicate runs were required for new 

identifications to reach a plateau is an important observation because it indicates 

the need for many replicate mass spectrometry runs when investigating complex 

fractions. The blood leukocyte and muscle studies had respectively engaged 5 

and 7 MudPIT runs using the same digestion and run methodology 9, 10, so that 

all three analyses should be fairly comprehensive and could be compared on 

equal footing. In the case of the blood leukocyte datasets, 5 MudPIT runs were 

performed for unstimulated leukocytes and an additional 5 MudPIT runs were 

separately performed for PHA-activated leukocytes, finding some differences 

between the two states 9; so for purposes of comparison just the PHA-stimulated 

datasets are used while total NET tallies include both. Before comparing the new 

liver NE datasets with the blood leukocyte and muscle NE datasets, redundancy 

due to differences in annotation was removed by converting protein IDs from all 

30 MudPIT runs to orthologous gene groups. This yielded 5222 proteins in total 
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identified among unstimulated and activated leukocyte, muscle, and liver NE 

fractions and 1037 NETs (Table S3). Proteins were ranked by abundance estimates 

based on normalized spectral counts 17, 18 and compared to microsomes to 

generate the NE-enriched dataset containing 4077 proteins and 598 NETs. 

 

Nuclear Envelope Tissue Specificity 

 

Considerable differences were observed in the total protein complement of the 

NE when comparing the three datasets. First, proteins were plotted as heat maps 

using a color coding based on the abundance estimate for a particular tissue 

using normalized spectral counts 17 across all tissues (Fig. 3A). Many proteins 

were uniquely identified in a single tissue. Furthermore, differences in abundance 

were often observed for those identified in multiple tissues. Though some of 

those identified in all tissues were highly abundant, surprisingly, quite a few of 

the tissue-specific NE proteins were more abundant than ones that were 

ubiquitously expressed. Second, tissue-specific NETs tended to be less conserved 

than those widely expressed. Analysis of the evolutionary conservation of NETs 

revealed a statistical correlation such that the more tissue-specific the NET the 
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less it was conserved (Fig. 3B). The subset of tissue-specific proteins thus is more 

likely to have evolved more specific functions. Third, tissue specificity of protein 

identifications correlated with tissue-specific expression data. NE proteins 

identified in the various tissues were checked for expression against the high-

throughput BioGPS transcriptome database that compared gene expression levels 

between 80 different human tissues 21, 22. Proteins color-coded by their proteomic 

identification in human blood leukocytes (red), rat muscle (yellow), or rat liver 

(blue) and the various combinations were plotted according to the tissue 

preference for their transcript expression in whole human blood (X-axis), human 

liver (Y-axis) or human muscle (Z-axis) (Fig. 3C). This yielded a clear correlation 

between mRNA tissue expression and protein identification in our tissue NE 

fractions across the wider set of proteins identified and underscores that many 

tissue differences are conserved across species.  

The calculated percentage of NETs shared between the muscle, liver, and 

blood leukocyte NEs was remarkably small — only 16% of the total NETs 

identified (Fig. 4A). Thus the vast majority of NETs identified are distinct in certain 

tissues. These tissue differences are not driven by species differences because the 

conservation between the two rat tissues (liver and muscle: 31%) is similar to that 
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between these and the human leukocytes (25% and 27%). Prep-to-prep variation 

should have been largely averaged out because, due to low yields in isolating 

clean leukocyte and muscle NEs, at least 12 individual preparations were 

combined. A value for shared proteins around 10% was maintained whether 

considering all proteins identified including soluble proteins or considering 

subsets that represent higher stringency criteria such as the NETs, those with 

spectral abundance in NEs >5 fold higher than microsomes, or proteins identified 

in multiple MudPIT runs (Fig. 4B). Nonetheless, this number should not be taken 

as an absolute value because of the inability to distinguish all contaminants 

obtained during NE isolation. 

To estimate the level of possible contamination acquired during cell 

fractionation, the complete datasets (5222 proteins) were searched for proteins 

with Gene Ontology (GO)-localization terms for other cellular organelles 

(particularly membrane bound organelles). The tissue distribution of this subset of 

NE proteins that have previously been linked to other organelles was the 

opposite of that for the whole datasets, with the largest fraction being shared by 

all three tissues for both the total protein set (not shown) and for 356 NETs (Fig. 
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4C). Thus, if these proteins were considered as contaminants it would only 

increase the amount of tissue specificity among the remaining proteins. 

If the tissue differences were due to a particular organelle more readily co-

purifying with NEs in one tissue versus another, then contaminants from that 

organelle would be expected to accumulate in a particular tissue. This was not the 

case for any organelle (Fig. 4D). Instead the percentage of these potential 

contaminants in each tissue was roughly equal for individual organelles, whether 

considering those identified exclusively in one tissue, in any two tissues, or in all 

three tissues.   

Proteins with GO-localization terms for any individual organelle generally 

represented only 0.5 to 3% of total proteins in any tissue dataset with the 

exception of ER and mitochondria (Fig. 4D). This could indicate contamination 

due to a favored relationship between the NE and these organelles. Indeed, as 

noted before, the ER is continuous with the NE 13 and also mitochondria are 

observed in invaginations of the NE 23. However, the fact that only a fraction of 

the known proteins from these organelles were identified in the NE preparations 

is perhaps more consistent with this subset of proteins having functions in both 

organelles. Interestingly, a large number of these proteins were associated with 
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multiple GO-localization terms, further consistent with their identification as valid 

NE components.  

If viewing those proteins enriched in the ER and mitochondria as more 

likely to be contaminants, then the use of the enriched dataset (with normalized 

spectral abundance in the NE datasets >5 fold over the microsome datasets) 

should yield high confidence in identifications. Mitochondrial proteins 8 accounted 

for 3% of those in the NE datasets: subtracting those left 3946 proteins in the 

mixed enriched dataset of which 571 were putative NETs. Because not all NETs 

were exclusive to the NE, we refer to individual NETs using their gene names. 

 

Direct Confirmation of NET Tissue Specificity 

 

The only way to verify if a protein is a true NE component is through direct 

testing by microscopy for targeting to the NE. The validity of these datasets is 

supported by the confirmation either with tagged fusions or antibodies thus far 

of 87 NETs (Table S4). All of the original 13 NETs met the enrichment criterion of 

being >5-fold enriched in the NE compared to microsomes and nearly 90% of the 

new NETs meeting this criterion that have been tested are now confirmed. 
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Strikingly, over half of the 74 new NETs confirmed to at least partially accumulate 

at the NE were <5-fold enriched compared to microsomal proteins based on 

normalized spectral counts — in fact 8 had very similar levels. Interestingly, 95% 

of the proteins tested in the <5-fold enriched set were validated as targeting to 

the NE. Thus many proteins in the datasets clearly occupy multiple cellular 

compartments, as expected from the continuity between the ER and outer nuclear 

membrane.  

Several proteins identified in only one of the extraction conditions were 

confirmed at the NE, further validating the methodology of using different 

extractions and sequential digests to increase identification of membrane 

proteins. NET33/SCARA5 and Tmem70 were identified only in the proteinase K 

digested datasets while NET34/SLC39A14 and NET62/MCAT were identified only 

in the salt/ detergent extracted datasets and another 16 proteins were identified 

only in the NaOH extracted/ trypsin digested datasets. 

Tissue specificity was directly tested for several NETs by investigating 

transcript and protein levels and antibody staining in different tissues. Transcript 

levels of 64 putative and confirmed NETs were compared by RT-PCR in 8 human 

tissues (Fig. 5A, Fig. S2, and Table S4). Though some were ubiquitously 
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expressed, many NET transcripts were only detected in a subset of the tissues 

examined. This tissue expression largely matched the tissue identification by mass 

spectrometry. Tissue differences at the protein level were confirmed by Western 

blot with NET antibodies comparing rat liver, heart, leg muscle and thymus lysates 

(Fig. 5B). Equal amounts of each tissue were resolved on the same gels for 

Western blotting and the signals for bands corresponding to each NET were 

directly quantified from fluorophores conjugated to the antibodies. The fraction 

for each tissue from the total signal from all tissues combined is plotted. 

Finally, antibodies generated to several of the confirmed NETs identified in 

liver, muscle and/ or leukocytes 9, 10, 24 were tested on cryosections from rat 

muscle, liver and spleen (Fig. 5C). With the exception of C17orf62, which was 

identified in all three tissues, NE staining was only observed in the tissue from 

which the novel NET was identified. For example POPDC2 and Tmem38A were 

both identified only in muscle and a rim staining around the nucleus as defined 

by DAPI staining for DNA was observed in the muscle cryosections, but not in the 

liver or spleen cryosections. To ensure that no weak nuclear rim staining was 

occurring, the exposure times were much longer in the tissues where rim staining 

was not observed giving the appearance of high background. Similarly nuclear 
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rim staining is only observed in liver for DHRS7 and TM7SF2 that were identified 

only in the liver datasets and Tmem126A that was identified uniquely in the 

leukocytes only appeared at the nuclear rim only in spleen (Fig. 5C). Importantly, 

it can be observed that even within a tissue staining was restricted to only certain 

cell types. Tissues are made up of multiple cell types and, accordingly, Tmem38A 

strongly stains only 3 of the 6 nuclei in the image shown. The cryosection data 

importantly demonstrate that tissue-specificity applies to NE residence, even if 

some moderate expression is observed in another tissue.  

 

Functional Consequences of NE Tissue Differences 

 

General protein characteristics such as isoelectric point, transmembrane topology, 

and prevalence of coiled-coils did not vary between NETs identified in different 

tissues (data not shown). At the same time the previously suggested tendency for 

NETs to have higher isoelectric points 25 was supported, suggesting that these 

datasets can be used to extract general characteristics of NETs.  

A further support of both the tissue distinctiveness of the NE and its 

functional importance is that the components of a particular protein complex 
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were often found together in one tissue while being absent from the other 

tissues. NE proteins from the different tissue datasets were searched for their 

occurrence in complexes listed in the HPRD database at Johns Hopkins University. 

For each complex for which a component was found in the NE datasets the 

proportion of complex components identified in the NE of each tissue was 

plotted (Fig. 6A). Though few complexes were recovered in their entirety in all 

three tissues, in many cases a complex was fully identified in one tissue but not 

identified at all or only partially identified in other tissues. In these latter cases the 

complex might contain different components in different tissues. These same 

characteristics were observed when considering only complexes containing 

transmembrane components (Fig. 6B).  

Another possible reason for NE tissue specificity is suggested by the 

subset of proteins identified at the NE that have Gene Ontology (GO) 26 functional 

annotations. To determine if particular nuclear GO-functions were partly 

accumulating at the NE so that they become relatively enriched at the NE, the 

fraction of our NE proteins with a particular functional annotation was compared 

to the fraction of total GO-annotated nuclear proteins with the same functional 

annotations. Thus a positive value for this ratio indicates relative enrichment at 
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the NE such that the percentage of NE proteins devoted to a particular function 

is greater than the percentage of GO-nuclear proteins devoted to that same 

function. Negative values indicate relative enrichment in the nucleoplasm (Fig. 

6C-F). All GO-functional annotations used were experimentally verified. 

General functional categories yielded expected distributions, e.g. DNA and 

RNA functions were relatively enriched in the nucleoplasm while transport 

functions were relatively enriched at the NE (Fig. 6C). However, more specific 

functions varied in relative NE enrichment, some according to the tissues 

sampled. Although as expected general RNA functions were more nucleoplasmic, 

those proteins involved in splicing were relatively enriched at the NE (Fig. 6D). 

This does not mean that splicing preferentially occurs at the NE compared to the 

nucleoplasm (it is clearly more nucleoplasmic by localization studies), but that 

among GO functions splicing occurs more often at the NE than other GO 

functions. The relative enrichment of some splicing functions at the NE is perhaps 

due to splicing factors that remain associated with mRNAs during transport 

through the nuclear pore complex. Other GO-functions had tissue-specific 

differences in their relative functional enrichment at the NE. Polyadenylation 
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functions, for example, were relatively enriched at the NE only in liver and muscle, 

but not in leukocytes.  

 Although most epigenetic regulatory functional groupings were not 

relatively enriched at the NE, certain silencing factors became relatively enriched 

at the NE in certain tissues. Polycomb group proteins were only relatively 

enriched at the NE in liver while NuRD was relatively enriched in all but 

unstimulated blood leukocytes (Fig. 6E). Similarly, several proteins involved in 

functional groupings for signaling pathways were also relatively enriched at the 

NE (Fig. 6F). Of note, a large difference was observed between unstimulated and 

PHA-stimulated blood leukocytes in cGMP-mediated signaling, Wnt receptor 

signaling was only relatively enriched in liver, and BMP signaling was more 

relatively enriched in the nucleoplasm in blood leukocytes than in liver and 

muscle. 
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Discussion 

 

The high degree of tissue specificity in the NE proteome observed here was not 

expected. However, it is not surprising in retrospect when considering that the 

three tissues compared are all made up of many different cell types that have 

striking differences in nuclear size, shape, and the amount of dense chromatin at 

the NE. For example, in addition to hepatocytes liver contains biliary epithelia, 

sinusoidal cells, Kupffer cells, and stellate cells as well as connective tissue, veins 

and arteries and muscle composition is similarly diverse. Though the blood cells 

were determined to be roughly 70% leukocytes, there were also many other cell 

types present. Applying the same bioinformatic analysis to a previously published 

dataset of mitochondria from different tissues 8 indicates that the NE has at least 

3-fold more tissue specificity than mitochondria. However, even the differences 

observed for mitochondria are large enough that these studies together strongly 

argue for evaluation of the protein complement of all organelles in different 

tissues. Furthermore the functional implications of this work underscore the 

importance of considering the possibility of tissue-specific mediators when 

studying the function of most well-characterized proteins. 
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As roughly a third of the exome is predicted to encode transmembrane 

proteins, it is important to develop improved methods for their detection in 

proteomic analyses. Most such approaches have focused on chemically improving 

resolution of membrane proteins on 2D gels, but it is generally assumed that 

LC/LC/MS/MS approaches avoid the losses inherent in 2D gels 27, 28. While this is 

certainly true to some extent, the greater than 10% increase in NET identifications 

we observe by using multiple extraction and digestion conditions strongly argue 

that proteomic studies still tend to under-represent transmembrane proteins and 

provides a simple approach that can increase membrane protein identifications. 

Our results also underscore the importance of engaging multiple replicate runs 

for complex fractions. Though some of the differences between liver NE proteins 

identified in this study compared to a previous MudPIT analysis of liver NEs 11 

might be attributed to improvements in peptide fragmentation and identification 

in the mass spectrometers used, within this study the replicate runs and 

sequential digests roughly doubled the number of identifications. Thus the 

identification of 2921 liver NE proteins in this study compared to 1150 in the 

previous study is apparently mostly due to these two procedural changes since 
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the purification procedures used to isolate NEs from liver were identical in both 

studies.  

The extreme sensitivity of mass spectrometry often yields identification of 

even minor contaminants in a sample. As cellular fractions are inherently 

impossible to purify to homogeneity, this has led to a tendency to use cutoffs 

based on abundance estimates as an effective in silica purification step. While this 

makes sense for most soluble proteins, that 95% of NETs tested from the <5-fold 

enriched set were confirmed as targeting at least in part to the NE argues that a 

separate, less stringent cutoff may be appropriate for transmembrane proteins.  

The reason that close to half of the total NETs identified were not >5-fold 

enriched at the NE is likely because they have multiple cellular localizations. This 

is consistent with separate high-throughput observations that 40% of all proteins 

have multiple cellular localizations 16 as well as the physical structure of the NE in 

association with both mitochondria and ER 13, 23. Thus it is not surprising that 

three tissue-specific proteins in the datasets previously published as 

mitochondrial and ER proteins (MARCHV, Tmem70 and Tmem38A; 29-31) were 

confirmed as NETs in the inner nuclear membrane by super-resolution microscopy 

9, 10. Even the well characterized and NE-enriched NET emerin has now been 
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found, in addition to its predominant inner nuclear membrane localization, also to 

associate with the centrosome in the outer nuclear membrane, the cytoplasm in 

myotubes, and interstitial discs in cardiac tissue 14, 32, 33. 

In keeping with this tendency for multiple cellular localizations, the <5-fold 

enriched set includes several proteins now confirmed at the NE by others that 

have characterized functions in small molecule transport or signaling (Table S4; 34-

38). The exclusion limit of the nuclear pore complexes allows for small molecules 

and ions to exchange 39; thus, the nucleus likely needs a variety of membrane 

transporters to maintain ion levels and pH. Notably, in muscle, where strong 

calcium fluxes during contraction could result in leakage into the nucleus that 

might damage the genome, there was an abundance of calcium transporters and 

associated proteins identified in the NE datasets that could clear the ion from the 

nucleus (Table S3). The identification of signaling molecules identified in the NE 

by direct testing 36, 38, 40, 41 supports the wider findings from the GO-functional 

term analysis of tissue-specific accumulation of signaling molecules in the NE. The 

specific observations regarding some NE accumulation of Wnt and BMP signaling 

proteins in certain tissues (Fig. 6F) reinforce separate observations that Smads 

and ß-catenin interact with the NETs MAN1 and emerin 42, 43 and, perhaps more 
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importantly, provide an explanation for how mutation of these ubiquitously 

expressed NETs can lead to tissue-specific disease pathologies. 

The identification of chromatin binding/ modifying proteins in association 

with the NE is also supported by various individual observations in the literature 

(e.g. LAP2 with BAF and HDAC3 44, 45, hALP1 with SUN1 46, emerin with lmo7 47, 

MeCP2 and HP1 with LBR 48, 49), though this study provides the first large-scale 

sampling of such proteins at the NE. Interestingly, the NuRD complex we find to 

be relatively enriched at the NE in certain tissues (Fig. 6E) is involved in Progeria 

defects caused by NE mutations 50. Thus known proteins in these datasets fit with 

the current literature for the NE influencing genome functions and these 

functions are tissue-specific. This indicates the likelihood that some of the 419 

new NE proteins lacking GO-annotations (including both soluble proteins and 

NETs) also will contribute to genome functions. This likelihood is supported by 

findings that several NETs with unknown functions identified in the leukocyte 

datasets could alter genome organization 9. More compelling, though, is the 

observation that even a protein with a known and distinct function identified in 

our datasets — the Na,K-ATPase m-subunit — has been confirmed at the NE 

and found to serve a secondary function as a co-regulator of transcription 51, 52. 
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NETs and their soluble partners that accumulate at the NE only in certain 

tissues could explain the focused tissue pathology in NE diseases. For example a 

muscle-specific NET that complexes with Lamin A or Emerin could be lost from 

the NE with mutations in these proteins linked to Emery-Dreifuss muscular 

dystrophy 53, 54. Differences between tissues in NE signaling pathways or 

chromatin organization/ gene regulation indicated here could result in particular 

tissues having greater susceptibility to disruption of specific functions with 

particular NE mutations. In keeping with this idea, the NuRD complex and 

signaling proteins indicated here to vary at the NE between tissues have been 

linked to various NE diseases and proteins 42, 43, 50. The primary deficits in heritable 

diseases tend to localize in a particular tissue and moreover within a particular 

organelle. Thus the subcellular location and tissue distribution of proteins linked 

to disease are important in constructing a model for how their mutation can lead 

to pathology. This study suggests that to better understand such diseases all cell 

organelles should be analyzed for tissue specificity in their proteomes. 
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Materials and Methods 

 

Preparation and MudPIT Analysis of NEs 

 

Rat liver NEs and microsomes were prepared and analyzed by MudPIT as 

described in 55 and 56. The human blood leukocyte and rat muscle NE preparation 

and datasets are described in detail in 9, 10. All protein pellets were solubilized in 

0.1 M Tris-HCl, pH 8.5, 8 M urea, 5 mM TCEP. Iodoacetamide was added to 10 

mM for 30 min and endoproteinase Lys-C and trypsin digestion performed as 

above. Samples were centrifuged 30 min at 17,500xg. Supernatants (“Ti” digests) 

were analyzed by MudPIT while pellets were resuspended in 0.1 M Na2CO3 pH 

11.5, 8 M urea, 5 mM TCEP for 30 min, then 10 mM iodoacetamide 30 min, and 

then digested with proteinase K 4 h at 37°C 57 and also analyzed by MudPIT (“PK” 

digests).  

 Importantly in all cases at least five separate MudPIT runs 19, 20 were 

engaged for each preparation. During the course of a fully automated 

chromatography, 15 120-minutes cycles (Supporting Table S1) of increasing salt 

concentrations followed by organic gradients slowly released peptides directly 
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into the mass spectrometer 56. Three different elution buffers were used: 5% 

acetonitrile, 0.1% formic acid (Buffer A); 80% acetonitrile, 0.1% formic acid (Buffer 

B); and 0.5 M ammonium acetate, 5% acetonitrile, 0.1% formic acid (Buffer C). The 

last five (out of 15) chromatography steps consisted in a high salt wash with 

100% Buffer C followed by the acetonitrile gradient. The distal application of a 2.5 

kV voltage electrosprayed the eluting peptides directly into ion trap mass 

spectrometers equipped with a nano-LC electrospray ionization source 

(ThermoFinnigan). Each full MS scan (from 400 to 1600m/z) was followed by five 

(LTQ) MS/MS events using data-dependent acquisition where the first most 

intense ion was isolated and fragmented by collision-induced dissociation (at 35% 

collision energy), followed by the second to 5th most intense ions. The raw data 

from each run is available at the Proteome Commons Tranche repository through 

the links given in Table S1. 

 

Data Analysis 

 

RAW files were extracted into ms2 file format 58 using RAW_Xtract v.1.0 59. MS/MS 

spectra — including the liver NEs and ER/microsomes data from 11 — were 



Nuclear envelope tissue differences 

32 

queried for peptide sequence information using SEQUESTTM v.27 (rev.9) 60 against 

28,400 rat proteins (non-redundant NCBI sequences on July 10, 2006), plus 197 

human and mouse homologs of previously identified NETs 9-11 and 172 sequences 

from usual contaminants (e.g. human keratins, IgGs, proteolytic enzymes…). In 

addition, sequences for proteins we had annotated as NETs using previous 

database releases were added to these databases. Finally, to estimate false 

discovery rates, each non-redundant protein entry was randomized. The resulting 

“shuffled” sequences were added to the database and searched at the same time 

as the “forward” sequences, leading to a total search space of 57,538 and 60,828 

sequences for the rat and mouse databases (Supporting Table S1). MS/MS 

spectra were searched without specifying differential modifications. To account for 

carboxamidomethylation by IAM, +57 Da were added statically to cysteine 

residues for all the searches. No enzyme specificity was imposed during searches, 

setting a mass tolerance of 3 amu for precursor ions and of ±0.5 amu for 

fragment ions. 

Spectrum/peptide matches were selected using DTASelect 61 and only 

retained if peptides were at least 7 amino acids long and their ends had to 

comply with the specificity of the proteolytic enzymes used, when appropriate. For 
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trypsin-digested samples, peptides had to be fully tryptic, while for samples that 

had been chemically cleaved with CNBr prior to trypsin digestion (previously 

acquired mouse NE dataset), Methionine or Lysine or Arginine had to be present 

before the N-terminus and at the C-terminus of the peptide sequences. In both 

cases, the DeltCn had to be at least 0.08, with a minimum XCorr of 1.8 for singly-, 

2.0 for doubly-, and 3.0 for triply-charged spectra, and a maximum Sp rank of 10. 

For the proteinase K-digested samples, no specific peptide ends were imposed, 

but the DeltCn cut-off was increased to 0.15 62, while XCorr minima were 

increased to 2.5 for doubly-, and 3.5 for triply-charged spectra. SEQUEST 

parameters for the spectrum to peptide matches for all detected proteins from rat 

liver NE and microsomal membranes are provided in Supporting Tables S2A and 

S2B, respectively. Results from different runs were compared and merged using 

CONTRAST 61 (Supporting Table S2C). Proteins that were subset of others were 

removed. NSAF7 (Tim Wen) was used to create the final report (Supporting Table 

S2C) on all detected proteins across the different runs, calculate their respective 

Normalized Spectral Abundance Factor (NSAF) values, and estimate false discovery 

rates (FDR). 

Spectral FDR was calculated as:  
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Protein level FDR was calculated as: 
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Under these criteria the final FDRs at the protein and peptide levels were 2.8 +/-

1.5% and 0.4 +/- 0.2%, respectively. 

To estimate relative protein levels, distributed Normalized Spectral 

Abundance Factors (dNSAFs) were calculated for each non-redundant protein or 

protein group, as described in 18:  
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in which shared spectral counts (sSpC) were distributed based on spectral counts 

unique to each protein i (uSpC) divided by the sum of all unique spectral counts 

for the M protein isoforms that shared peptide j with protein i (Supporting 

Tables S2C and S3). 
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Antibodies and Western Blotting 

 

Antibodies used: GAPDH (Enogene, E1C604), Calreticulin (Cell Signalling, 2891S), 

Calnexin (Stressgen, SPA-860), lamin A (3262), NET antibodies were rabbit 

polyclonals generated to peptides from human sequences (Millipore) LAP2ß (06-

1002), SUN2 (06-1038), TMTC3 (06-1009), TM7SF2 (06-1026), TMEM126A (06-

1037), TMEM201 (06-1013), C17orf62 (06-1033), C17orf32 (06-1035), PPAPDC3 

(06-1025), TMEM38A (06-1005), POPDC2 (06-1007), TMEM209 (06-1020), DHRS7 

(06-1027). 

 Rat tissue lysates were prepared by grinding tissues under liquid nitrogen, 

adding sample buffer (100 mM Tris pH 6.8, 4 M Urea, 2% SDS, 50 mM DTT and 

15% sucrose) and heating at 65°C 10 min followed by sonibath sonication. 

Loading was normalized with GAPDH antibodies. Mitochondria were prepared by 

pelleting a liver post-nuclear supernatant at 11,000xg 15 min and lysing in sample 

buffer. To increase lamina solubility, liver NE and microsomes were incubated on 

ice in 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 2 mM MgCl2, 0.2% NP-40 with 

protease inhibitors, then heated at 65°C for 2 min and sonicated in a 4°C 
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sonibath. Protein concentrations were determined by Bradford assay before 

adding sample buffer. 

 For Fig. 1E and 5 blots after quantification of protein levels in the lysates 

equal amounts of protein were added for NEs and microsomes. For Fig. 1F blots 

mitochondrial lysates were loaded so that porin levels matched those in total cell 

lysates and NE lysates were loaded so that the lamin levels matched those in total 

cell lysates. Blots shown in Fig.1 were run according to standard procedures 

visualizing bands with ECL reagent. For Fig. 5, protein bands were visualized and 

quantified with IR800-conjugated secondary antibodies using a LI-COR Odyssey 

and median background subtraction and averages from three independent blots 

are plotted. 

 

RT-PCR 

 

All human total tissue RNAs for RT-PCR reactions were obtained from Stratagene 

except for peripheral blood leukocytes (PBL). In this case RNA was isolated using 

Trizol from cells prepared as for the blood leukocyte proteomics. Reactions were 

carried out with 10 ng of the tissue RNAs using the Titan one tube RT-PCR 
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system (Roche) according to manufacturers instructions, except that dNTP 

concentration was increased to 500 µM and MgCl2 to 3 mM. Typical reaction 

conditions were 30 min reverse transcription at 50°C, 2 min denaturation at 94°C, 

then 24 cycles of 94°C for 30 s, 60°C for 30 s and 68°C for 45 s. Peptidylprolyl 

isomerase A (PPIA) was used as a loading control and reactions were typically 

repeated at least three times when notable differences were observed.  

 

Immunofluorescence Microscopy 

 

For cryosections, fresh rat tissues cut into 2-3 mm cubes were embedded in 

Optimal Cutting Temperature Compound (Tissue-Tek) and snap-frozen in liquid 

nitrogen. Sections were cut on a Leica CM 1900 Cryostat at 6-8 µm thickness and 

fixed in -20°C methanol. After rehydration, sections were incubated with NET 

antibodies O/N at 4°C followed by 2° antibodies as above. Images were recorded 

using an SP5 laser confocal system with 63x oil 1.4 NA objective (Leica). 

Micrographs were saved as TIFF files and prepared for figures using Photoshop 

8.0. 
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Bioinformatics Analysis 

 

Proteins identified by SEQUEST were first mapped to an Ensembl gene. 

Human/Rat/Mouse orthologous groups were identified with Ensembl release 48 63 

to remove redundancy and false variation that might have resulted from 

differences in human and rodent gene assignments. Orthologous group IDs were 

sorted according to run criteria (e.g. appearance in runs for different tissues, 

membrane helix status, and 5x higher dNSAF values in NEs vs microsomes) and 

compared using Venn diagrams to measure the level of tissue distinctness. Area 

proportional Venn diagrams were generated using Venn Diagram Plotter v1.4 

from PNNL, US Department of Energy 

(http://omics.pnl.gov/software/VennDiagramPlotter.php).  

Basic properties of proteins listed in supplemental tables were calculated 

using BioPerl modules 64 or EMBOSS 65. PSORTII was used for the prediction of 

nuclear localization signals 66. For prediction of transmembrane spans it is 

important to note that a very stringent set of criteria was used for those 

annotated as “TM” in the supplemental tables and used for the numbers 

generated comparing NETs in various figures. Only proteins that had predictions 
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by TM-HMM version 2.0c 67 AND which had no signal peptide (SP) prediction if 

they had only one predicted membrane span were used for this analysis. 

However, some NETs confirmed at the NE (including one of the original pre-

proteomics NETs) did not have membrane spans predicted using these criteria. 

The detailed listing of TM-HMM and SP predictions is given in Table S3. 

 To plot heatmaps the log2 of the dNSAF scores for NETs within a 

particular tissue were z-transformed to standardize between experiments. 

 Comparison of expression levels in different tissues was done by 

downloading microarray signal data from BioGPS at http://biogps.gnf.org/ 21, 22 

and calculating the fold-expression over the median value from a wide variety of 

mouse tissues tested in this transcriptome database. For Fig. 3C just those 

proteins appearing in ~60% or more of MudPIT runs were considered. 

 Proteins were searched against the human protein reference database 

(HPRD, Johns Hopkins University) to identify protein complexes. These were 

compared between the individual NE datasets to determine how many complex 

components were identified in each tissue and then restricted to those that had 

at least 75% of complex components identified between all datasets. 

http://biogps.gnf.org/


Nuclear envelope tissue differences 

40 

Biologically interesting gene ontology (GO)-terms and their corresponding 

child terms were retrieved from the mySQL database 

“http://amigo.geneontology.org” 26. To ensure a fair comparison for term 

enrichment, only human-mapped genes in our dataset were considered. These 

were compared to the genomic dataset of human Ensembl genes using BioMart 

(http://www.biomart.org/) as well as those GO-defined as having nuclear 

localization. Only experimentally verified GO-functional annotations were used 

including EXP (Inferred from EXperiment), IDA (Inferred from Direct Assay), and IPI 

(Inferred from Physical Interaction). For a given GO-term, the fraction of genes 

containing that term or any of the child terms was calculated for all datasets. The 

fold-difference was calculated by dividing this fractional value from our dataset of 

interest by the value from the reference group. GO terms were also used to 

identify potential contaminants as proteins with GO-targeting annotations for 

other organelles as follows. GO:0016023, cytoplasmic membrane-bounded vesicle; 

GO:0005794, Golgi apparatus; GO:0005739, mitochondrion; GO:0005773, vacuole; 

GO:0005768, endosome; GO:0005783, endoplasmic reticulum; GO:0042579, 

microbody; GO:0005856, cytoskeleton; GO:0005694, chromosome; GO:0005730, 

nucleolus; GO:0005840, ribosome. 

http://amigo.geneontology.org/
http://www.biomart.org/
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Figure Legends 

 

Figure 1. Liver NE preparations. (A) NEs were isolated from rat liver by first 

dounce homogenization of the tissue to release nuclei, followed by separation of 

many contaminating membranes on sucrose gradients, and finally digestion and 

washing away chromatin. These were further extracted with salt and detergent or 

NaOH to enrich respectively for proteins associated with the insoluble lamin 

polymer or proteins embedded in the membrane. (B-D) Electron micrographs of 

NE preparations. Arrowheads point to places where NPCs are inserted in the 

membrane. Note that images are taken at the step prior to extraction as no 

discernible structure was left after NaOH or salt and detergent extraction. Thus 

much cleaner NEs were subject to mass spectrometry analysis. Scale bar 200 nm. 

(B) Double membrane from particularly clean NE. (C) Most NEs had still chromatin 

connected. (D) Contaminants were also observed stuck to NEs such as the 

fragmented mitochondria shown. (E-F) NEs from the pre-extraction stage were 

analyzed by Western blot for expected contaminants. (E) A microsome fraction 

was separately isolated from the post-nuclear supernatant and similar amounts of 

total protein loaded. NE proteins lamin A/C and LAP2ß were not present in the 
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microsome fraction while the ER marker calreticulin was highly enriched in the 

microsome fraction compared to the NE fraction. As the ONM is continuous with 

the ER, the low calreticulin signal in the NE fraction is expected. (F) A 

mitochondria fraction was isolated by pelleting at 11,000 x g from the post-

nuclear supernatant. The mitochondrial marker porin was undetectable in NEs at 

the level of sensitivity of the LICOR for fluorescence detection, even when 20x 

more NEs were loaded.  

 

Figure 2. Comparison of Replicate MudPIT Runs. (A) Both the process of 

separately analyzing alkali and salt/ detergent extracted NEs and the sequential 

protease digestions increased the recovery of proteins, particularly NETs. 

Proportional venn diagrams are shown for the transmembrane proteins identified 

in all the NaOH or salt/ detergent extracted samples and for those identified in all 

trypsin alone or trypsin followed by proteinase K runs. (B) The same complex 

sample equally divided yields differences in the identifications for each MudPIT 

run. However, as the number of runs increases fewer new unique proteins are 

identified such that the curve plateaus with roughly five replicates. In this 

experiment liver NEs extracted with 400 mM NaCl, 1% ß-octylglucoside were 
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digested with trypsin. Insoluble material pelleted and digested with PK. The 

trypsin sample was split into four equal samples and the PK material into two 

equal samples and all six samples were separately run on the mass spectrometer.  

 

Figure 3. Global analysis of NE tissue differences. (A) All proteins identified in all 

tissues are plotted in the heatmap with TM proteins on the left and soluble 

proteins on the right. Color-coding is for log-transformed dNSAF values, 

indicating the relative abundance within a particular tissue with red meaning high 

abundance and blue low abundance. Raw dNSAF values are given in Table S3. 

Black indicates absence from a particular dataset. The PHA-activated blood 

leukocyte dataset was used, but results are indistinguishable from the separate 

unstimulated blood leukocyte dataset. The differences between tissues and the 

lack of a correlation between abundance in a tissue and overall abundance 

further support the tissue specificity. (B) The percent identity between mouse, rat 

and human homologs was calculated for all NE proteins and the distribution is 

plotted using variable width Tukey boxplots according to the number of tissues in 

which each protein was found. The proteins found in all three tissues were 

significantly more conserved in sequence than the proteins found in just one 
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(Kolmogorov-Smirnov test: D = 0.1547, p-value 4.0 x 10-15). (C) NE proteins that 

were identified in at least 60% of runs compared with data from the BioGPS 

transcriptome database. Proteins identified in different tissues were color-coded: 

PHA-activated human blood leukocytes (red), rat muscle (yellow), rat liver (blue), 

PHA-activated blood leukocytes and muscle (orange), PHA-activated blood 

leukocytes and liver (purple), muscle and liver (green), all three tissues (brown). 

These were then plotted according to their level of expression in the different 

tissues such that those more specifically expressed in human blood, muscle or 

liver respectively climb along the X-, Y-, and Z-axis. Note that the BioGPS 

transcriptome database did not have a separate leukocyte-enriched population 

similar to that used for the proteomic analysis; therefore, whole blood was used 

for the comparison because expression in this tissue should encompass all the 

proteins identified in the more restricted blood leukocyte NE datasets. 

 

Figure 4. NE tissue distinctiveness. (A) Numbers of NETs overlapping between 

rat liver, rat muscle and human PHA-stimulated blood leukocytes expressed using 

a proportional Venn diagram. For this analysis PHA-stimulated blood leukocytes 

were considered separately from the leukocytes that were not stimulated (hence 
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fewer than the 1037 total NETs identified). This was done because protein 

differences between the two conditions render them almost like separate tissues 

9; however, results were similar when comparing either blood leukocyte dataset 

with the other tissues. (B) The small amount of overlap between tissues for the NE 

proteome is maintained for higher stringency protein subsets. Plotting the 

percentage of proteins shared between all three tissues yields a value ~10% that 

is maintained when considering higher stringency subsets: NET, transmembrane 

proteins; 5x, 5-fold enriched over microsomes by abundance estimates (dNSAF); 

Multi, appeared in multiple MudPIT runs for the same tissue. (C) Proportional 

Venn diagram of transmembrane proteins found in NE datasets that had GO-

targeting annotations associated with other organelles. As in A, just the PHA-

stimulated blood leukocytes are shown for the comparison. Many more proteins 

were identified in multiple tissues among this set compared to the total set of 

NETs shown in Fig. 3A. (D) The percentage of total proteins in a particular NE 

tissue dataset that have GO-targeting annotations for each organelle is plotted by 

each contaminating organelle (cyto-mbv is cytoplasmic membrane bound 

vesicles). Most organelles represented less than 3% contamination of any NE 

preparation. Moreover, the amount was similar for proteins identified in individual 
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or multiple NE tissue datasets. Only mitochondria and ER GO-targeting annotated 

proteins were found more commonly in all NE datasets. Standard deviations are 

shown. Note that the error bar for mitochondria contaminants in 2-tissues goes 

above the graph scale: the standard deviation value is 10.96.  

 

Figure 5. Experimental confirmation of NET tissue-specificity. (A) RT-PCR from 

human tissue RNA confirms that several of the NETs identified by MudPIT in a 

particular tissue have messages preferentially transcribed in that tissue and often 

absent from a subset of other tissues. NETs shown are grouped according to the 

tissue of highest expression (muscle, liver or blood leukocytes), but some were 

found in multiple datasets. Peptidylprolyl isomerase A (PPIA) was used as a 

loading control. (B) Protein tissue specificity assessed by Western blot. Equal 

amounts of protein from lysates of rat liver, heart, muscle, and thymus were 

compared on the same blots for the levels of different NETs. NET levels were 

quantified using fluorescently labeled secondary antibodies using a LI-COR 

system. The total signal for all four tissues was calculated and the fraction of the 

total signal in each tissue is colored in the plot. The average values from three 

blots are shown. (C) Cryosections of rat heart or leg muscle, liver and spleen were 
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stained with NET antibodies. Nuclear rim staining was only observed in the tissue 

where the NET was identified by proteomics: C17orf62 was more abundant in 

blood leukocytes, but identified in all tissues. Sometimes cytoplasmic staining was 

also observed, consistent with NETs occupying multiple cellular locations; 

however, most of the appearance of NETs in the cytoplasm in other tissues comes 

from increasing exposure times in order to see the background. Bars 10 µm. 

 

Figure 6. Differences in NE functional composition in different tissues. (A) Proteins 

identified in at least 60% of runs for a particular NE fraction were searched for 

their inclusion in the Johns Hopkins HPRD database of annotated protein 

complexes and then for each complex the proportion of complex components 

found in each tissue was calculated. Data are shown for the 352 complexes for 

which at least 75% of components were found in the datasets and the percentage 

for each tissue is plotted additively with liver in blue, muscle in yellow and blood 

leukocytes in red. The maximum proportion for any individual complex is 1; 

therefore a complex fully intact in all three tissues would have a value of 3. For 

many complexes all components were found in only one or two of the tissues. (B) 

The percentage of complex components found in each tissue is similarly plotted, 
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but restricted to those complexes containing a NET. (C-F) Within the subset of 

proteins in NE datasets with GO-annotations, the fraction with a particular 

functional annotation was calculated. Similar fractions were calculated against all 

“nuclear”-annotated proteins in the GO-database. The relative ratio of NE/nuclear 

fractions was then calculated, setting a 1:1 ratio to 0 so that positive values are 

fold-relative enrichment and negative are fold-relative deficiency at the NE 

compared to the whole nucleus. Relative enrichment thus indicates a function 

that is more enriched at the NE compared to other functions associated with the 

nucleus as opposed to indicating a concentration at the NE. Liver, muscle, and 

unstimulated and activated blood leukocyte datasets are represented by blue, 

yellow, pink and red bars, respectively. (C) General functions such as nuclear 

transport, signaling and ion transport were relatively enriched at the periphery. 

(D) More specific RNA functions revealed some tissue differences in relative NE 

enrichment. (E) Certain epigenetic functions were relatively enriched at the NE in 

particular tissues. (F) Some signaling functions were relatively enriched at the NE 

in certain tissues. For example, Wnt signaling was relatively enriched at the NE in 

liver while being strongly deficient at the NE in unstimulated blood leukocytes. 
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