
Western University Western University 

Scholarship@Western Scholarship@Western 

Paediatrics Publications Paediatrics Department 

4-1-2011 

T1 independent, T2* corrected chemical shift based fat-water T1 independent, T2* corrected chemical shift based fat-water 

separation with multi-peak fat spectral modeling is an accurate separation with multi-peak fat spectral modeling is an accurate 

and precise measure of hepatic steatosis and precise measure of hepatic steatosis 

Catherine D.G. Hines 
University of Wisconsin-Madison 

Alex Frydrychowicz 
University of Wisconsin-Madison 

Gavin Hamilton 
University of California, San Diego 

Dana L. Tudorascu 
Waisman Center 

Karl K. Vigen 
University of Wisconsin-Madison 

See next page for additional authors 

Follow this and additional works at: https://ir.lib.uwo.ca/paedpub 

Citation of this paper: Citation of this paper: 
Hines, Catherine D.G.; Frydrychowicz, Alex; Hamilton, Gavin; Tudorascu, Dana L.; Vigen, Karl K.; Yu, 
Huanzhou; McKenzie, Charles A.; and Sirlin, Claude B., "T1 independent, T2* corrected chemical shift 
based fat-water separation with multi-peak fat spectral modeling is an accurate and precise measure of 
hepatic steatosis" (2011). Paediatrics Publications. 2561. 
https://ir.lib.uwo.ca/paedpub/2561 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/paedpub
https://ir.lib.uwo.ca/paed
https://ir.lib.uwo.ca/paedpub?utm_source=ir.lib.uwo.ca%2Fpaedpub%2F2561&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/paedpub/2561?utm_source=ir.lib.uwo.ca%2Fpaedpub%2F2561&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Catherine D.G. Hines, Alex Frydrychowicz, Gavin Hamilton, Dana L. Tudorascu, Karl K. Vigen, Huanzhou Yu, 
Charles A. McKenzie, and Claude B. Sirlin 

This article is available at Scholarship@Western: https://ir.lib.uwo.ca/paedpub/2561 

https://ir.lib.uwo.ca/paedpub/2561


Original Research

T1 Independent, T2
* Corrected Chemical Shift Based

Fat–Water Separation With Multi-peak Fat Spectral
Modeling Is an Accurate and Precise Measure of
Hepatic Steatosis

Catherine D.G. Hines, PhD,1 Alex Frydrychowicz, MD,1,2 Gavin Hamilton, PhD,3

Dana L. Tudorascu, PhD,4 Karl K. Vigen, PhD,1 Huanzhou Yu, PhD,5

Charles A. McKenzie, PhD,6 Claude B. Sirlin, MD,3

Jean H. Brittain, PhD,7 and Scott B. Reeder, MD, PhD1,8*

Purpose: To determine the precision and accuracy of he-
patic fat-fraction measured with a chemical shift-based
MRI fat-water separation method, using single-voxel MR
spectroscopy (MRS) as a reference standard.

Materials and Methods: In 42 patients, two repeated
measurements were made using a T1-independent, T�

2 -
corrected chemical shift-based fat-water separation
method with multi-peak spectral modeling of fat, and T2-
corrected single voxel MR spectroscopy. Precision was
assessed through calculation of Bland-Altman plots and
concordance correlation intervals. Accuracy was assessed
through linear regression between MRI and MRS. Sensi-
tivity and specificity of MRI fat-fractions for diagnosis of
steatosis using MRS as a reference standard were also
calculated.

Results: Statistical analysis demonstrated excellent
precision of MRI and MRS fat-fractions, indicated by
95% confidence intervals (units of absolute percent)
of [�2.66%,2.64%] for single MRI ROI measurements,
[�0.81%,0.80%] for averaged MRI ROI, and
[�2.70%,2.87%] for single-voxel MRS. Linear regression
between MRI and MRS indicated that the MRI method is
highly accurate. Sensitivity and specificity for detection of
steatosis using averaged MRI ROI were 100% and 94%,
respectively. The relationship between hepatic fat-fraction
and body mass index was examined.

Conclusion: Fat-fraction measured with T1-independent
T�
2 -corrected MRI and multi-peak spectral modeling of fat

is a highly precise and accurate method of quantifying
hepatic steatosis.

Key Words: fat quantification; MRI; hepatic steatosis;
nonalcoholic fatty liver disease; MR spectroscopy
J. Magn. Reson. Imaging 2011;33:873–881.
VC 2011 Wiley-Liss, Inc.

NONALCOHOLIC FATTY LIVER disease (NAFLD) is the
most common cause of chronic liver disease in West-
ern societies with an increasing prevalence that paral-
lels current epidemics of obesity and diabetes (1,2).
NAFLD is considered by many to be the hepatic mani-
festation of the metabolic syndrome, a constellation of
diseases including adult-onset diabetes (type II), hy-
perlipidemia, and obesity (3,4). Individuals with NAFLD
can progress to a more aggressive form of NAFLD
known as nonalcoholic steatohepatitis (NASH), which
is characterized by inflammation, ballooning degenera-
tion and fibrosis, in addition to steatosis (5,6). Many
patients with steatohepatitis progress to end-stage fibro-
sis (cirrhosis), which predisposes patients to hepato-
cellular carcinoma (HCC) and liver failure (7,8).

Intracellular accumulation of triglycerides and fatty
acids (steatosis) is the earliest and hallmark histologi-
cal feature of NAFLD. Definitive diagnosis of NAFLD
and grading of steatosis requires biopsy, which is
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regarded as the clinical gold standard test and is the
current standard of care. Biopsy, however, is limited
by cost, high sampling variability (9), and other signifi-
cant risks that limit its utility for repeated evaluation
of liver disease. For these reasons, a noninvasive, cost-
effective, and quantitative alternative to biopsy is
needed for accurate quantification of hepatic steatosis.

MRI is highly sensitive to the presence of fat due to
differences in chemical shift between water and fat.
MR spectroscopy (MRS) is considered by many to be
the noninvasive reference standard for quantification
of hepatic fat content (10,11). MRS has both higher
sensitivity and specificity for hepatic fat quantification
compared with ultrasound and computed tomography
(12), indicating that an MR-based technique would be
advantageous for hepatic fat quantification. However,
like biopsy, MRS is prone to sampling error due to the
heterogeneity of steatosis because typically only a sin-
gle voxel is used to assess the entire liver. Alterna-
tively, chemical shift based water–fat separation
methods have demonstrated accurate quantification
of hepatic steatosis by several groups (11,13–17).

Several confounding factors have been identified
that corrupt the ability of MRI to accurately quantify
fat using fat–water separation techniques (18). These
factors must be addressed before the measured fat-
fraction accurately reflects the underlying concentra-
tion of triglycerides. Specific confounding factors
include T1 bias (13,19–21), noise bias (19), the com-
plex NMR spectrum of fat (13,14,22), T�

2 decay
(13,23), and phase errors caused by eddy currents
(24). To perform the correction for eddy currents, a
complex image-based fat–water separation including
spectral modeling and T�

2 correction is performed first.
Then, a second fit to a magnitude signal model is per-
formed, using the complex estimates of water, fat and
T�
2 as the starting conditions. This provides estimates

of water and fat that are free from the effects of phase
shifts from eddy currents. After correction for all con-
founding factors, the measured fat-fraction is equiva-
lent to the proton density fat-fraction (PDFF). PDFF is
an inherent property of the tissue, and is platform
and protocol independent, making it a potentially use-
ful biomarker of liver fat content.

A recently described complex chemical shift-based
fat-water separation method, based on IDEAL (Iterative
Decomposition of water and fat with Echo Asymmetry
and Least squares estimation) has been described for
fat quantification in the liver (14,19,22,23,25). Using a
low flip angle to minimize T1 bias (19), magnitude dis-
crimination to minimize noise bias (19), T�

2 correction
(22,23), multi-peak fat spectral modeling (14,22)
including six spectral peaks of fat, and eddy current
correction (24), accurate quantification has been vali-
dated in phantom experiments (26), animal experi-
ments (17) and more recently in in vivo studies (25),
over a wide range of fat-fractions (17,26). These stud-
ies collectively provide validation on the accuracy of
this method.

However, rigorous validation of a biomarker also
requires an understanding of the precision (repeat-
ability) of a method to assess longitudinal changes in
the biomarker. Therefore the primary purpose of this

work is to determine the precision of clinical MRI he-
patic fat quantification when correction for all known
confounding factors has been performed. A secondary
purpose is to reproduce accuracy measurements
reported in previous validation studies (25), using MRS
as the reference standard for hepatic fat-fraction.

PATIENTS AND METHODS

Patients

After obtaining IRB approval and informed consent,
42 patients (22 male, 20 female) referred to the
Department of Radiology for abdominal MRI were
recruited for this study, irrespective of diagnosis,
between September 16, 2009 and August 20, 2010.
Mean age for all patients was 51.0 6 13.1 years
(range, 23–80 years). Thirty-five of these patients had
height and weight recorded in the medical record;
these patients had a mean weight of 82.0 6 25.8 kg
(range, 50.3–207 kg), and a mean body mass index
(BMI) of 24.6 6 5.5 kg/m2 (range, 19.1–45.3 kg/m2).
All patients over the age of 18 were eligible for this
study, and no patients were excluded, unless they
declined to consent to the study.

Imaging Protocol

Imaging was performed on three 1.5 Tesla (T) clinical
scanners (Signa HDx, GE Healthcare, Waukesha, WI)
using an eight-channel phased array cardiac coil or
eight-channel body phased array coil.

For each patient, two repeated measurements of a
quantitative chemical shift-based water–fat separation
MRI method and a single voxel MRS were made to
assess repeatability (precision) of both techniques.
Between each measurement (‘‘Time 1’’ and ‘‘Time 2’’),
the patient was removed from the magnet, and the an-
terior coil elements only removed. The patient was
instructed to sit up and then lie down, after which the
anterior coil was repositioned and the patient placed
back into the magnet without disturbing the posterior
coil. New landmarks and new localizers were acquired,
and all prescanning was repeated, followed by re-
prescription of the MRI and MRS sequences to simu-
late a new, independent exam.

For volumetric MRI fat-fraction imaging, an investi-
gational version of the three-dimensional spoiled gra-
dient echo (SPGR) IDEAL sequence was used (27).
Using fly-back readouts, a total of six echoes were
acquired per TR, and a 2D parallel imaging accelera-
tion method (ARC) (28,29), which had an effective
net acceleration of 2.2, was used to reduce the total
imaging time to 21 s. Imaging parameters for the
MRI sequence were: first TE ¼ 1.3 ms, echo spacing ¼
2.0 ms, TR ¼ 13.7 ms, BW ¼ 6 125 kHz, FOV ¼ 35 �
35 cm, slice ¼ 10 mm, 256 � 128 matrix, flip ¼ 5�

to reduce T1 bias (19), and 24 slices in the superior/
inferior direction. Thus, complete liver coverage was
acquired in one breath-hold, with true spatial resolu-
tion of 1.4 � 2.7 � 10 mm.

Single voxel breath-held MRS data were acquired to
provide a reference fat-fraction. Spectra were acquired
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using an investigational version of STEAM (Stimulated
Echo Acquisition Mode) without water suppression. A
2.5 � 2.5 � 2.5 cm3 MRS voxel was placed in the pos-
terior segment (Couinaud segments 6 or 7) of the right
hepatic lobe while avoiding large vessels in the same
attempted location for both acquisitions, but without
reference to images from the first time point. Imaging
parameters for MRS included the following: TR ¼
3500 ms, 2048 readout points, 1 average, and spec-
tral width (receiver bandwidth) ¼ 62.5 kHz. To per-
form T2 correction in postprocessing, echo times of
10, 20, 30, 40, and 50 ms were acquired (30), within
a single 21-s breath hold.

Postprocessing and Image Reconstruction

An investigational, modified IDEAL water–fat estima-
tion reconstruction was used to correct for confound-
ing factors of T�

2 decay, multiple spectral peaks of fat,
noise bias, and eddy currents. Reconstructed images
were displayed and edited in DICOM format. ROI
analysis was performed on the DICOMs on a GE
Advantage workstation (GE Healthcare, Waukesha,
WI). Researchers commonly assess fat content in the
liver using ‘‘signal fat-fraction,’’ which is a useful met-
ric that is independent of B1 coil sensitivity profiles,
providing a normalized measurement of fat concentra-
tion. Signal fat-fraction (h) images are generated on a
pixel-by-pixel basis using fat images (Sf) and water
images (Sw), where:

h ¼ Sf

Sf þ Sw
½1�

When all confounding factors have been accounted
for and/or corrected, the signal fat-fraction is equiva-
lent to the PDFF, which is the ratio of unconfounded
signal from all mobile protons of fat, and the sum of
the total unconfounded signal from mobile protons in
water and fat. For the purposes of this work, we will
use the term ‘‘fat-fraction’’ for brevity.

Because estimates of R�
2 (¼1/T�

2) are generated as
part of T�

2 correction, as described by Yu et al (23), an
R�

2 map is also generated, where the estimated value
of R�

2 is displayed on a pixel-by-pixel basis throughout
the liver. This T�

2 correction method assumed a that
water and fat have the same T�

2 decay in a voxel.
A flip angle of 5� was used to minimize T1 bias,

although simulations have shown that small residual
T1 bias may remain (31). However, methods exist to
correct for this bias (13,31), using assumed values of
T1 for fat and water of 343 ms and 586 ms, respec-
tively, as previously reported (32). The amount of T1

bias was calculated using the TR and assumed values
for the T1 of fat and water, and used to correct the
estimated MRI fat-fractions (31). Using simulation
results, T1 bias correction was performed separately
from the image reconstruction using measured MRI
fat-fractions in Excel.

A single operator at a separate institution blinded to
time points and patient information performed the
MRS postprocessing using jMRUI (31). A Matlab
based program that uses a singular-value decomposi-

tion (SVD)-based approach to combine the signals
from individual coils was used (33). Spectra were then
read into jMRUI and analyzed using the AMARES
algorithm. Using prior knowledge, the total fat signal
was calculated by summing the signals from peaks
located at identical locations as the multi-peak fat
spectrum used for MRI (30). The water and fat signals
were corrected for T2 relaxation by nonlinear fitting of
the peaks areas from the different TEs. A priori
knowledge of the fat spectrum was then used to cor-
rect for the fat peaks near or under the water peak to
give a T2-corrected MRS fat-fraction (34,35).

Statistical Analysis

Two independent readers recorded fat-fraction and R�
2

from the reconstructed fat-fraction and R�
2 maps,

respectively, measured in nine regions of interest
(ROIs) corresponding to each of the nine Couinaud
segments. Because the vascular anatomy was difficult
to visualize on fat-fraction images when the fat-frac-
tion was low, ROIs were selected on water images and
copied to the identical location of the corresponding
fat-fraction images and R�

2 maps. In this way, any
bias caused by immediate feedback from seeing the
ROI value on the monitor during ROI positioning was
avoided. Care was taken to avoid large blood vessels
and any liver lesions for ROI selection. ROIs from
individual segments were matched to the anatomy
between Time 1 and Time 2 to the best of each read-
er’s ability. ROIs were identical in size between indi-
vidual segments for the two time points.

In addition, an ROI was placed at the same location
in the MRI fat-fraction image as the MRS voxel using
the location of the MRS voxel, which was recorded in
the spectroscopy file. Three ROIs of 2.5 � 2.5 cm2 were
recorded to more closely reflect the three-dimensional
shape of the MRS voxel. One ROI was measured at the
recorded location of the MRS voxel, which was at the
center of the MRS voxel, and an identical ROI was cop-
ied to the slices immediately superior and inferior to
the center slice. The measurements from the three
ROIs were averaged to report a MRI fat-fraction at the
location of the MRS voxel. Because both readers would
record an identical ROI using the recorded voxel loca-
tion, an MRI ROI measurement at the location of the
MRS voxel was performed for Reader 1 only.

Subsequent analysis was performed on the nine
individual fat-fraction ROIs recorded in the Couinaud
segments, one fat-fraction ROI at the location of the
MRS voxel, and an average fat-fraction of the ROIs
recorded in the Couinaud segments; a weighted aver-
age by size of ROI was calculated such that an aver-
age fat-fraction across the entire liver was reported.
ROIs differed in size for each segment, although aver-
age ROI size was 152 pixels (range, 55–751 pixels,
maximum and minimum located in segments 1 and 8,
respectively).

Precision of MRI fat-fraction measurements was
assessed through Bland-Altman analysis between time
points for both readers using individual ROIs and aver-
age fat-fraction across the liver. Bland-Altman plots
were also generated for MRS data between time points
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of processed spectra and for the MRI fat-fractions
acquired at the location of the MRS voxel. Precision of
MRI R�

2 measurements was also assessed through
Bland-Altman analysis between time points for both
readers using individual ROIs across the liver only.
Corresponding 95% confidence intervals and concord-
ance correlation coefficients between each compared
data were also estimated (36).

Accuracy was assessed through linear regression
and calculation of the concordance correlation coeffi-
cient between the MRI fat-fraction measurement
co-registered with the T2-corrected MRS fat-fraction
measurement pooled for Time 1 and Time 2, as
recorded by Reader 1. Two-sided t-tests were per-
formed to determine whether statistically significant
differences exist between estimated slope values and
1.0, and obtained intercept values and 0.0 (a ¼ 0.05).

Sensitivity and specificity for the diagnosis of stea-
tosis, not separated by reader or time point, of the
MRI fat-fraction measured at the location of the MRS
voxel were calculated using MRS-determined 5.56%
as the diagnostic threshold of steatosis (15,37). Sensi-
tivity and specificity, not separated by time point, of the
average fat-fraction across the liver were also calcu-
lated. The area under the receiver operating character-
istic curve (AROC) was calculated for MRI fat-fractions
at the location of the MRS voxel and average MRI fat-
fractions using MRS as a reference.

Regression was performed between average MRI fat-
fraction and BMI for patients who had recorded height

and weight information (n ¼ 30), to determine
whether a relationship existed between hepatic fat-
fraction and BMI. Next, using a cutoff of a BMI of
25 kg/m2, patients were divided into two groups (BMI
above 25 kg/m2 and BMI below 25 kg/m2). Average
MRI fat-fractions from each group were plotted
against BMI. A modified Levene’s test was performed
on the average MRI fat-fractions of each BMI group.
The modification of this test was based on deviations
from the median, rather than the mean, such that the
modified Levene’s test performed an analysis of
variance test based on absolute deviations from the
group median. Lastly, a linear regression between
average R�

2 values and average MRI fat-fractions for
both readers was performed to determine if a relation-
ship existed between hepatic fat-fraction and R�

2 values.
Bland-Altman analysis, and linear regression were

performed using Excel (v10 SP3, Microsoft, Redmond,
WA). Calculation of concordance correlation coeffi-
cients was performed using R v2.8.1 and the Levene’s
test and AROC calculations were performed using R v
2.10.0 (R Development Core Team, 2009) (38).

RESULTS

Figure 1 displays representative MRI fat-fraction
images and corresponding MRS spectra at Time 1 and
Time 2 of three patients in this study. Patient 1 (top
row) was referred for evaluation of a focal nodular

Figure 1. Representative patient fat-fraction images and MRS spectra at Time 1 and Time 2. Patient 1, Patient 2, and Patient
3 are examples of severely elevated fat-fraction, mildly elevated fat-fraction, and a normal fat-fraction, respectively. The MRI
fat-fraction recorded at the location of the MRS voxel is displayed on each fat-fraction image. MRS fat-fractions are as indi-
cated on the spectra. Excellent agreement is seen between time points for individual readers, between different readers, and
between techniques.
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hyperplasia (not shown on this slice), but no known
liver disease otherwise, and displays an example of
abnormally elevated fat-fraction. Average MRI fat-frac-
tion among both readers and time points was 33.4 6
0.7% and was 34.2 6 0.6% for MRS averaged over the
two measurements. Patient 2 (middle row) has a his-
tory of hepatitis C and cirrhosis. This patient had an
elevated MRI fat-fraction of 6.5 6 0.1% averaged
across readers and time points, and an MRS fat-frac-
tion of 7.3 6 0.1% averaged across time points. Simi-
larly, Patient 3 (bottom row) displays a normal fat-
fraction (15,37). Patient 3 had a history of renal cell
carcinoma, and underwent an MRI to rule out liver
metastases, although he/she has no history of diffuse
liver disease. Average MRI fat-fraction among both
readers and time points was 1.2 6 0.2%, and average
MRS fat-fraction was 1.3 6 0.2% across time points.
These examples indicate excellent agreement between
the two techniques, time points, and readers.

The average fat-fraction among males was 5.72 6
6.03% (range, 0.00–22.03%) and among females was
5.71 6 9.00% (range, 0.54–36.45%). A two-tailed
t-test showed no statistically significant differences in
fat-fractions between genders (P ¼ 0.99).

Precision

Figure 2 shows a Bland-Altman plot between MRI fat-
fraction measured at Time 1 and 2 for the nine meas-
ured ROIs in the Couinaud segments for both readers
(369 points per reader). These results demonstrate
both close agreement between readers and time
points, and that fat-fraction measured with MRI pro-
vides very precise fat-fractions. The limits of agree-
ment encompass 95% of the data, are in units of
absolute percent, and effectively constitute the 95%
confidence interval (CI). Results from Reader 1 were
slightly more precise than Reader 2, where the limits
of agreement were [�2.54%, 2.44%] for Reader 1 and
[�2.76%, 2.64%] for Reader 2. When the data for

Time 1 and Time 2 were not separated by reader (i.e.,
pooled), the limits of agreement are [�2.66%, 2.64%].

Figure 3 displays a Bland-Altman plot of the aver-
age MRI fat-fraction across the liver for all patients
between Time 1 and Time 2 (41 points per reader). As
averaging reduces variability, the limits of agreement
were [�0.66%, 0.64%] for Reader 1 and [�0.93%,
0.93%] for Reader 2. When average MRI fat-fraction
across the liver were pooled the limits of agreement
were [�0.81%, 0.79%] between Time 1 and 2.

Figure 4 displays a Bland-Altman plot between fat-
fractions from Time 1 and 2 for the MRS data (41
points); the limits of agreement were [�2.69%, 2.87%].

Figure 5 displays a Bland-Altman plot between R�
2

measurements from Time 1 and 2 for both readers (369
points per reader). The limits of agreement of R�

2 meas-
urements were [�15.19 s�1, 13.84 s�1] for Reader 1
and [�19.67 s�1, 18.42 s�1] for Reader 2. When not
separated by reader, the limits of agreement for R�

2

measurements were [�17.39 s�1, 16.23 s�1]. The aver-
age R�

2 value for both readers and time points was
31.4 6 10.2 s�1 (range, 9.3–182.8 s�1), and the average
T�
2 value was 35.0 6 12.0 ms (range, 5.5–107.6 ms).

Figure 2. Bland-Altman plot between Time 1 and Time 2 for
the MRI fat-fractions measured in each of the Couinaud seg-
ments for all volunteers, indicating high precision. The limits
of agreement for Reader 1 (circles) are [�2.54%, 2.44%],
denoted as a heavy dashed line. The limits of agreement for
Reader 2 (squares) are [�2.76%, 2.83%], denoted as a fine
dashed line. If data from both readers is pooled, the limits of
agreement are [�2.66%, 2.64%].

Figure 3. Bland-Altman plot between Time 1 and Time 2 for
average MRI fat-fraction across the liver. The limits of agree-
ment for Reader 1 (circles), denoted as a heavy dashed line,
are [�0.66%, 0.64%] and for Reader 2 (squares), denoted as a
fine dashed line, are [�0.94%, 0.93%]. If data from both read-
ers is pooled, the limits of agreement are [�0.81%, 0.80%].

Figure 4. Bland-Altman plot between Time 1 and Time 2 for
MRS fat-fraction. The limits of agreement are [�2.70%,
2.87%].
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As steatosis is known to be heterogeneous across
the liver (39), Figure 6 plots the standard deviation
over the liver against the average fat-fraction over the
liver to assess the variability across segments as a
function of the average fat-fraction. Data are shown for
Reader 1 at Time 1 and Time 2, where both the stand-
ard deviation and average are expressed in fat-fraction
percent (%). No patient had a fat-fraction below 0%
over the liver, although ROIs from individual segments
can be below 0% due to noise. Lower variance is seen
at low fat-fractions, but the variance is relatively inde-
pendent from fat-fraction and plateaus at higher fat-
fractions. No strong correlation between the standard
deviation and average of the fat-fraction is seen since
obtained slope, intercept, and r2 is 0.07 6 0.01, 3.02
6 0.09, and 0.35, respectively.

Precision can be evaluated by the calculation of
concordance correlation coefficients (rc), where values
of 1.0 correspond to perfect agreement. Correlation
between Time 1 and Time 2 for the MRS fat-fractions is
0.98. Correlation between Time 1 and Time 2 for Reader
1 (Reader 2) using the fat-fraction ROIs measured in
the Couinaud segments was 0.98 (0.97), and between
readers for Time 1 (Time 2) was 0.97 (0.98). Similarly,
correlation between Time 1 and Time 2 for Reader 1
(Reader 2) using the average fat-fraction across the liver
was 0.99 (0.99), and between readers for Time 1 (Time
2) was 0.99 (0.99). Similarly, correlation between R�

2

measurements between Time 1 and Time 2 for Reader 1
(Reader 2) was 0.71 (0.59), and between readers for
Time 1 (Time 2) was 0.71 (0.48). These results indicate
that the readers are in high agreement with each other,
and that both MRS and MRI show high agreement for
repeated measures. Furthermore, fat-fraction measured
with both MRI and MRS are highly precise, and that
these results are independent of reader.

Accuracy

MRI provides highly accurate measures of fat-fraction
using MRS as a reference standard, as seen by the

regression between MRI fat-fraction measured at the
MRS voxel location and MRS fat-fraction for Reader 1
in Figure 7. Perfect agreement would have a slope of
1.0 and an intercept of 0.0. Estimated slope, inter-
cept, and r2 are 1.04 6 0.02, 0.06 6 0.21, and 0.96,
respectively. The slope and intercept are not signifi-
cantly different from 1.0 and 0.0, respectively (P ¼
0.07, and P ¼ 0.8, respectively). Of note, the intercept
indicates high accuracy, particularly at low fat-frac-
tions. For comparison, the estimated slope, intercept,
and r2 for MRI fat-fraction measured at the MRS
voxel location without T1 bias correction versus MRS
fat-fraction (not shown, for brevity) are 1.09 6 0.02,
0.11 6 0.22, and 0.96, respectively, indicating slight

Figure 5. Bland-Altman plot between Time 1 and Time 2 for
R�

2 measurements. The limits of agreement for Reader 1
(circles), denoted as a heavy dashed line, are [�15.19 s�1,
13.84 s�1], and for Reader 2 (squares), denoted as a fine
dashed line, are [�19.67 s�1, 18.42 s�1]. If data from both
readers is pooled, the limits of agreement are [�17.39 s�1,
16.23 s�1].

Figure 6. Standard deviation over the liver versus average
fat-fraction over the liver for Reader 1 at Time 1 and Time 2.
Both axes are expressed in fat-fraction percent (%). A lower
variance is seen in most patients that have low fat-fractions.
In general, however, the variance of measurements was rela-
tively independent as the variance plateaus at approximately
5% for a wide range of fat-fractions.

Figure 7. Linear regression of MRI fat-fraction measured in
the location of the MRS voxel and MRS fat-fraction indicates
high accuracy. Estimated slope, intercept, and r2 value are
1.04 6 0.02, 0.06 6 0.21, and 0.96, respectively. The slope
and intercept are not significantly different from 1.0 and 0.0,
respectively. An inset zoom of the 0–10% region is shown in
the lower right hand corner. Heavy dashed line is unity, and
95% confidence interval of the slope is as fine dashed lines.
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overestimation of the fat-fraction by MRI without cor-
rection for residual T1 bias. Without correction for re-
sidual T1 bias, the slope of 1.09 is significantly differ-
ent from 1.0 (P ¼ 0.0006) although the intercept is
not significantly different from 0.0 (P ¼ 0.6). The cal-
culated concordance correlation coefficient between
MRI fat-fraction at the location of the MRS voxel and
MRS fat-fractions was 0.977 for Time 1 and 0.976 for
Time 2. Concordance correlation between MRS fat-
fraction and average MRI fat-fractions across the liver
for Reader 1 at Time 1 (Time 2) was 0.74 (0.64) and
for Reader 2 at Time 1 (Time 2) was 0.75 (0.63).

Sensitivity and Specificity

Sensitivity and specificity for diagnosis of steatosis
were calculated using MRI fat-fractions colocalized to
the MRS voxel. A 5.56% fat-fraction as diagnostic
threshold for steatosis, using MRS as the reference
standard (37), was used. The fat-fraction measure-
ments at the location of the MRS voxel had a sensitiv-
ity and specificity of 91% and 93%, respectively. Using
MRS as a reference, AROC for MRI fat-fraction meas-
urements at the location of the MRS voxel was 0.97.

In addition to comparing the sensitivity and specific-
ity of MRI fat-fractions colocalized to the MRS voxel, the
sensitivity and specificity of average MRI fat-fractions
were compared. As with the previous comparison, a
5.56% fat-fraction as diagnostic threshold for steatosis,
using MRS as the reference standard, was used. For the
average MRI fat-fractions across the liver, sensitivity
and specificity were 100% and 94%, respectively, for
both readers. Using MRS as a reference, AROC for aver-
age fat-fractions across the liver was 0.97.

Body Mass Index

An exponential relationship is seen between MRI fat-
fraction and body mass index (BMI), as shown in Fig-
ure 8A. MRI fat-fraction is pooled for both readers,
and the line of best fit is y ¼ 0.165e0.1089x, with an r2

value of 0.55, indicating good agreement The data are
not linear and an exponential relationship empirically
fit the data better than other types of curve fitting
that were tested.

Using a cutoff of a BMI of 25 kg/m2, patients were
divided into two groups. Average MRI fat-fractions
were plotted against these two cutoff groups (above
25 and below 25) in Figure 8B. All patients with a
BMI under 25 have average MRI fat-fractions below
5.56% (range, 1.18%–2.25%), or the threshold of a
diagnostic indicator of steatosis. Patients with a BMI
above 25 display a wider range of fat-fractions (range,
1.04%–33.72%). Using a confidence level of 0.05,
results of the modified Levene’s test indicated statisti-
cally significant differences (P ¼ 0.0034) in the me-
dian of each BMI patient group.

Relationship Between R*
2 and Fat-Fraction

In addition, no agreement is seen between R�
2 values

and average MRI fat-fractions. For both readers and
time points, the line of best fit for R�

2 versus average

MRI fat-fractions is y ¼ 0.0336x þ 32.206, with an r2

value of 0.0011 (plot not shown).

DISCUSSION

In this work, we have evaluated the precision and ac-
curacy of a T1-independent, T�

2 -corrected chemical
shift based water–fat separation method that uses
multi-peak spectral modeling of fat and eddy current
correction, using MRS as the reference standard. Our
results indicate that hepatic fat-fraction measured
with MRI is both precise and accurate. True changes
in hepatic fat-fraction exist when longitudinal differ-
ences are outside the interval [�2.66%, 2.64%] for
side-by-side single ROI measurements, [�0.81%,
0.80%] for a weighted average of nine ROI measure-
ments across the liver, or [�2.69%, 2.87%] for a single
MRS measurement. The precision of a single MRS
measurement is similar to that of the side-by-side
precision, as only one measurement is taken in the
liver for each method, and MRS precision is similar to
that described by van Werven et al (40). As seen in
this study, MRI fat-fractions have similar or better

Figure 8. a: Regression of average MRI fat-fraction and BMI
displays an exponential relationship for pooled readers. Line
of best fit is y ¼ 0.165e0.1089x and r2 is 0.55. b: Comparison
of average MRI fat-fraction versus patients with a BMI above
and below 25 kg/m2. All patients with a BMI below 25 kg/m2

have fat-fractions that are considered normal or healthy,
although a wider range of fat-fractions is seen in patients with
a BMI above 25 kg/m2.
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precision than MRS fat-fraction imaging. Further-
more, the precision determined by Bland-Altman
analysis is supported by the concordance correlation
coefficients, which are all greater than 0.97. For MRS
or MRI, these intervals may prove useful for noninva-
sive longitudinal treatment monitoring of NAFLD to
determine whether an observed change is meaningful,
and establishment of these intervals to analyze the
longitudinal precision of hepatic fat quantification
was the primary aim of this work.

In addition, fat-fractions measured with MRI was
shown to be as accurate as that measured with MRS.
To the best of our knowledge, this is the first study
that has performed validation studies of both the pre-
cision and accuracy of a quantitative MRI method
that corrects for the combination of T1 bias, noise
bias, T�

2 decay, spectral model of fat, and the effects of
eddy currents in patients. Furthermore, we success-
fully reproduced the accuracy results that have been
previously reported (25), which was the secondary
aim of this work, and these results show that the
technique is accurate over a larger patient population.

An advantage to using a whole liver imaging method
is that it has the ability to take multiple measure-
ments to improve precision, and an improvement in
the precision of fat-fraction imaging is certainly seen
when multiple ROIs are recorded across the liver. Tak-
ing multiple ROIs may be recommended for future clini-
cal use, as it can more accurately assess the liver in the
presence of heterogeneous steatosis and improve preci-
sion, although the optimal number and placement of
ROIs has yet to be determined. Furthermore, it is well-
known that steatosis occurs heterogeneously across the
liver (39), and as this technique has been successfully
validated, it can be performed to thoroughly analyze fat
concentration in segments of the liver.

In this work we have also investigated the ability of
MRI to establish a diagnosis of steatosis using MRS as
a reference. Sensitivity and specificity of MRI fat-frac-
tion measurements at the location of the MRS voxel
were lower than that using average MRI fat-fractions.
This improvement in detection of steatosis from using
averaged fat-fraction measurements may occur
because while the variability of single fat-fraction
measurements at low fat-fraction is small, the averag-
ing operation further improves precision of measure-
ments. While variability of fat-fraction can occur
across the liver, this variability is probably low at fat-
fractions near 5.56%. The reduction in variability
achieved through averaging multiple ROIs in different
Couinaud segments probably dominates the variabili-
ty of fat-fraction near the thresh-hold and may
explain why sensitivity and specificity of averaged
MRI fat-fraction is higher than that from a single ROI
colocalized to the MRS voxel.

Furthermore, this work has established the preci-
sion of R�

2 measurements in the liver that are provided
simultaneously as part of the T�

2 correction for the fat-
fraction measurements. For two readers, the limits of
agreement are [�17.39 s�1, 16.23 s�1]; this range
determines the change that must be observed to clas-
sify it as a true longitudinal change. Average T�

2 values
in this study (35.0 6 12.0 ms) are consistent with

reported values in normal subjects, such as that of
Schwenzer et al (28.1 6 7.1 ms) (41), although a
smaller cohort was used for this work and our study
examined patients with a variety of liver diseases. Of
note, lower correlation and precision was seen
between readers and time points for R�

2 measure-
ments, which is still under investigation. However, dif-
ferences in R�

2 values did not appear to affect the
measured fat-fraction since high correlation and pre-
cision are still seen for the fat-fraction results.

A potential limitation of this study was the use of
assumed values of T1 of fat and water for correction of
the residual T1 related bias, beyond that achieved
through use of a small flip angle. If actual T1 values
in patients are different than the assumed values, the
T1 bias correction may be incorrect. However, pub-
lished values of T1 of fat and water were used in the
calculation of the bias (32). Regardless, without any
T1 correction, the correlation between MRI and MRS
was excellent, with near perfect statistical agreement.
Further optimization between SNR and T1 bias for
SPGR acquisitions is currently being performed, as
higher flip angles are preferred to maximize SNR,
although they lead to greater overestimation of fat.
Another limitation of this study was the lack of biopsy
correlation and the use of MRS as the reference
standard for determination of accuracy. In addition,
no specific group of patients were recruited for this
study, rather, we recruited ‘‘all-comer’’ patients under-
going routine abdominal MRI examinations. However,
steatosis is a disease feature, not a diagnosis, and is
common to many types of liver disease.

In conclusion, proton density fat-fraction, when
measured with T1 independent, T�

2 corrected MRI with
multi-peak spectral modeling and eddy current cor-
rection is a precise and accurate method to quantify
hepatic fat content, when using T2-corrected MRS as
a reference standard. This method provides reliable in
vivo fat quantification in patients and is promising as
a quantitative biomarker of hepatic steatosis.
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