135 research outputs found

    Microbiome Variation in an Intertidal Sea Anemone Across Latitudes and Symbiotic States

    Get PDF
    Many cnidarians form symbiotic relationships with brown dinoflagellate algae in the genus Symbiodinium. Bacteria are important to this symbiosis, with diverse functions such as providing nutrients to the symbiont and pathogen protection to the cnidarian. Disrupted bacterial communities are associated with thermally stressed cnidarians, which have a higher likelihood of expelling their symbionts, an event called bleaching. To better understand the association between thermal tolerance and bacterial community structure, we studied communities associated with an exceptionally thermal tolerant cnidarian, Anthopleura elegantissima. This intertidal symbiotic sea anemone is distributed from the subtropical waters of Baja California to subarctic Alaska, and experiences daily temperature fluctuations of up to 20°C. It is also flexible in its symbioses, predominantly hosting Symbiodinium, but occasionally hosting the green algae Elliptochloris marina or existing without symbionts in an aposymbiotic state. We used 16S rRNA gene amplicon sequencing to characterize the natural variation of microbial communities associated with Anthopleura elegantissima in these three symbiotic states and across a latitudinal gradient. In this study, we identified a core microbiome, made up predominantly of low-abundance taxa. We found that the communities associated with A. elegantissima were weakly linked to latitude. Diversity analyses revealed significantly higher species richness values for microbial communities associated with anemones hosting E. marina. Lastly the microbiome communities associated with different symbiotic states were compositionally distinct. Taken together, our results suggest that the structure of microbial communities associated with these temperate cnidarians is tightly linked to symbiotic state and weakly linked to other biogeographic phenomena

    Western Bumble Bee: Declines in the Continental United States and Range-Wide Information Gaps

    Get PDF
    In recent decades, many bumble bee species have declined due to changes in habitat, climate, and pressures from pathogens, pesticides, and introduced species. The western bumble bee (Bombus occidentalis), once common throughout western North America, is a species of concern and will be considered for listing by the U.S. Fish and Wildlife Service (USFWS) under the Endangered Species Act (ESA). We attempt to improve alignment of data collection and research with USFWS needs to consider redundancy, resiliency, and representation in the upcoming species status assessment. We reviewed existing data and literature on B. occidentalis, highlighting information gaps and priority topics for research. Priorities include increased knowledge of trends, basic information on several life‐history stages, and improved understanding of the relative and interacting effects of stressors on population trends, especially the effects of pathogens, pesticides, climate change, and habitat loss. An understanding of how and where geographic range extent has changed for the two subspecies of B. occidentalis is also needed. We outline data that could be easily collected in other research projects that would increase their utility for understanding range‐wide trends of bumble bees. We modeled the overall trend in occupancy from 1998 to 2018 of Bombus occidentalis within the continental United States using existing data. The probability of local occupancy declined by 93% over 21 yr from 0.81 (95% CRI = 0.43, 0.98) in 1998 to 0.06 (95% CRI = 0.02, 0.16) in 2018. The decline in occupancy varied spatially by landcover and other environmental factors. Detection rates vary in both space and time, but peak detection across the continental United States occurs in mid‐July. We found considerable spatial gaps in recent sampling, with limited sampling in many regions, including most of Alaska, northwestern Canada, and the southwestern United States. We therefore propose a sampling design to address these gaps to best inform the ESA species status assessment through improved assessment of how the spatial distribution of stressors influences occupancy changes. Finally, we request involvement via data sharing, participation in occupancy sampling with repeated visits to distributed survey sites, and complementary research to address priorities outlined in this paper

    Complex interactive effects of water mold, herbicide, and the fungus Batrachochytrium dendrobatidis on Pacific treefrog Hyliola regilla hosts

    Get PDF
    Infectious diseases pose a serious threat to global biodiversity. However, their ecological impacts are not independent of environmental conditions. For example, the pathogenic fungus Batrachochytrium dendrobatidis (Bd), which has contributed to population declines and extinctions in many amphibian species, interacts with several environmental factors to influence its hosts, but potential interactions with other pathogens and environmental contaminants are understudied. We examined the combined effects of Bd, a water mold (Achlya sp.), and the herbicide Roundup® Regular (hereafter, Roundup®) on larval Pacific treefrog Hyliola regilla hosts. We employed a 2 wk, fully factorial laboratory experiment with 3 ecologically realistic levels (0, 1, and 2 mg l-1 of active ingredient) of field-formulated Roundup®, 2 Achlya treatments (present and absent), and 2 Bd treatments (present and absent). Our results were consistent with sublethal interactive effects involving all 3 experimental factors. When Roundup® was absent, the proportion of Bd-exposed larvae infected with Bd was elevated in the presence of Achlya, consistent with Achlya acting as a synergistic cofactor that facilitated the establishment of Bd infection. However, this Achlya effect became nonsignificant at 1 mg l-1 of the active ingredient of Roundup® and disappeared at the highest Roundup® concentration. In addition, Roundup® decreased Bd loads among Bd-exposed larvae. Our study suggests complex interactive effects of a water mold and a contaminant on Bd infection in amphibian hosts. Achlya and Roundup® were both correlated with altered patterns of Bd infection, but in different ways, and Roundup® appeared to remove the influence of Achlya on Bd

    The amphibians and reptiles of Mindanao Island, southern Philippines, II: the herpetofauna of northeast Mindanao and adjacent islands

    Get PDF
    We summarize all available amphibian and reptile species distribution data from the northeast Mindanao faunal region, including small islands associated with this subcenter of endemic vertebrate biodiversity. Together with all publicly available historical information from biodiversity repositories, we present new data from several major herpetological surveys, including recently conducted inventories on four major mountains of northeast Mindanao, and adjacent islands of Camiguin Sur, Dinagat, and Siargao. We present species accounts for all taxa, comment on unresolved taxonomic problems, and provide revisions to outdated IUCN conservation status assessments in cases where our new data significantly alter earlier classification status summaries. Together, our comprehensive analysis of this fauna suggests that the greater Mindanao faunal region possesses distinct subcenters of amphibian and reptile species diversity, and that until this area is revisited and its fauna and actually studied, with on-the-ground field work including targeted surveys of species distributions coupled to the study their natural history, our understanding of the diversity and conservation status of southern Philippine herpetological fauna will remain incomplete. Nevertheless, the northeast Mindanao geographical area (Caraga Region) appears to have the highest herpetological species diversity (at least 126 species) of any comparably-sized Philippine faunal subregion

    Understanding implementability in clinical trials : a pragmatic review and concept map

    Get PDF
    Background The translation of evidence from clinical trials into practice is complex. One approach to facilitating this translation is to consider the 'implementability' of trials as they are designed and conducted. Implementability of trials refers to characteristics of the design, execution and reporting of a late-phase clinical trial that can influence the capacity for the evidence generated by that trial to be implemented. On behalf of the Australian Clinical Trials Alliance (ACTA), the national peak body representing networks of clinician researchers conducting investigator-initiated clinical trials, we conducted a pragmatic literature review to develop a concept map of implementability. Methods Documents were included in the review if they related to the design, conduct and reporting of late-phase clinical trials; described factors that increased or decreased the capacity of trials to be implemented; and were published after 2009 in English. Eligible documents included systematic reviews, guidance documents, tools or primary studies (if other designs were not available). With an expert reference group, we developed a preliminary concept map and conducted a snowballing search based on known relevant papers and websites of key organisations in May 2019. Results Sixty-five resources were included. A final map of 38 concepts was developed covering the domains of validity, relevance and usability across the design, conduct and reporting of a trial. The concepts drew on literature relating to implementation science, consumer engagement, pragmatic trials, reporting, research waste and other fields. No single resource addressed more than ten of the 38 concepts in the map. Conclusions The concept map provides trialists with a tool to think through a range of areas in which practical action could enhance the implementability of their trials. Future work could validate the strength of the associations between the concepts identified and implementability of trials and investigate the effectiveness of steps to address each concept. ACTA will use this concept map to develop guidance for trialists in Australia

    The relative effects of upwelling and river flow on the phytoplankton diversity patterns in the ria of A Coruña (NW Spain)

    Get PDF
    Phytoplankton species assemblages in estuaries are connected to those in rivers and marine environments by local hydrodynamics leading to a continuous flow of taxa. This study revealed differential effects of upwelling and river flow on phytoplankton communities observed in 2011 along a salinity gradient from a river reservoir connected to the sea through a ria-marine bay system in A Coruña (NW Spain, 43° 16-21’ N, 8° 16-22’ W). With 130 phytoplankton taxa identified, the assemblages were dominated in general by diatoms, particularly abundant in the bay and in the estuary, but also by chlorophycea and cyanobacteria in the reservoir. Considering the entire seasonal cycle, the local assemblages were mainly characterized by changes in cryptophytes and diatoms, small dinoflagellates and some freshwater chlorophycea. Salinity, nitrate, and organic matter variables, were the main environmental factors related to the changes in the phytoplankton communities through the system, while phosphate and nitrite were also important for local communities in the estuary and the bay, respectively. The corresponding local phytoplankton assemblages showed moderate levels of connectivity. The estuarine community shared a variable number of taxa with the adjacent zones, depending on the relative strength of upwelling (major influence from the bay) and river flow (major influence of the reservoir) but had on average 35% of unique taxa. Consequently, local and zonal diversity patterns varied seasonally and were not simply related to the salinity gradient driven by the river flow.ANILE (CTM2009-08396 and CTM2010-08804-E), FIOME (CTM2011-28792-C02-01-MAR), and MEFIO (CTM2011-28792-C02-02-MAR) of the Plan Nacional de I+D+i (Spain), and RADIALES of the Instituto Español de Oceanografía (IEO, Spain).Versión del editor2,01
    corecore