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INTRODUCTION

Infectious diseases comprise one of the greatest
threats to biodiversity conservation, through their di -
rect effects on host populations as well as community
and ecosystem-mediated effects on non-host species

(Smith et al. 2009a, Cobb et al. 2012). However,
pathogens do not act upon hosts independent of
other environmental factors. The etiology of infec-
tious diseases in general is multifactorial; disease
is produced by the interactive effects of pathogens
and environmental conditions on hosts (Dobson &
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ABSTRACT: Infectious diseases pose a serious threat to global biodiversity. However, their eco-
logical impacts are not independent of environmental conditions. For example, the pathogenic
fungus Batrachochytrium dendrobatidis (Bd), which has contributed to population declines and
extinctions in many amphibian species, interacts with several environmental factors to influence
its hosts, but potential interactions with other pathogens and environmental contaminants are
understudied. We examined the combined effects of Bd, a water mold (Achlya sp.), and the herbi-
cide Roundup® Regular (hereafter, Roundup®) on larval Pacific treefrog Hyliola regilla hosts. We
employed a 2 wk, fully factorial laboratory experiment with 3 ecologically realistic levels (0, 1, and
2 mg l−1 of active ingredient) of field-formulated Roundup®, 2 Achlya treatments (present and
absent), and 2 Bd treatments (present and absent). Our results were consistent with sublethal
interactive effects involving all 3 experimental factors. When Roundup® was absent, the propor-
tion of Bd-exposed larvae infected with Bd was elevated in the presence of Achlya, consistent with
Achlya acting as a synergistic cofactor that facilitated the establishment of Bd infection. However,
this Achlya effect became nonsignificant at 1 mg l−1 of the active ingredient of Roundup® and dis-
appeared at the highest Roundup® concentration. In addition, Roundup® decreased Bd loads
among Bd-exposed larvae. Our study suggests complex interactive effects of a water mold and a
contaminant on Bd infection in amphibian hosts. Achlya and Roundup® were both correlated with
altered patterns of Bd infection, but in different ways, and Roundup® appeared to remove the
influence of Achlya on Bd.
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Foufopoulos 2001, Altizer et al. 2013). In some host−
pathogen systems, the impact of one pathogen on
host individuals or populations is exacerbated, or in
some cases reduced, by a second pathogen, a para-
site, or an abiotic stressor (Acevedo-Whitehouse &
Duffus 2009, Telfer et al. 2010, Maas et al. 2012, Fen-
ton 2013). However, the interactive effects of multi-
ple pathogens on hosts and how these effects vary
over environmental gradients are poorly understood.
We tested for interactive effects in a host−pathogen−
stressor system that included amphibian hosts, the
fungal pathogen Batrachochytrium dendrobatidis (Bd),
a potentially pathogenic water mold in the genus
Achlya, and the herbicide Roundup® Regular.

Bd, a pathogenic fungus associated with popula-
tion declines of many amphibian species (Van Rooij
et al. 2015), is considered by some to be the world’s
single most destructive pathogen in terms of bio -
diversity loss (Smith et al. 2009b, Hyatt et al. 2010,
Kilpatrick et al. 2010). Bd is the main pathogen that
causes the disease known as amphibian chytridiomy-
cosis (Longcore et al. 1999), although a recently dis-
covered congener, B. salimandrivorans, also causes
the disease (Martel et al. 2013). Spread of virulent
strains of Bd into naïve host populations appears to
have aided the emergence of this disease as a global
conservation threat (Farrer et al. 2011). The effects of
Bd on amphibians are influenced by several biotic
and abiotic factors, including host species (Gervasi
et al. 2013), population (Bradley et al. 2015) and life-
history stage (Searle et al. 2013), host diversity
(Searle et al. 2011), predators of Bd zoospores (Buck
et al. 2011), amphibian skin bacteria (Harris et al.
2009), temperature (Woodhams et al. 2003, Raffel et
al. 2013, Catenazzi et al. 2014), ultraviolet-B radia-
tion (Ortiz-Santaliestra et al. 2011), moisture (Busta-
mante et al. 2010), and environmental contaminants
(McMahon et al. 2013). However, few studies have
investigated possible interactive effects of Bd and
other pathogens or parasites on amphibians (but see
Romansic et al. 2011, Paetow et al. 2013), despite
observations of amphibians co-infected with Bd and
other pathogens (e.g. Nieto et al. 2007, Reshetnikov
et al. 2014, Rothermel et al. 2016, Warne et al. 2016).

We tested the combined effects of Bd and a water
mold species isolated from a natural amphibian
breeding site in the central Oregon Cascade Range,
USA, and identified to the genus Achlya using mor-
phological characteristics (Johnson et al. 2002). Sev-
eral species of Achlya are facultative parasites that
infect fish (Johnson et al. 2002) and some species in
this genus infect amphibians (Tiffney & Wolf 1939,
Czeczuga et al. 1998, Petrisko et al. 2008). Water

molds use live and dead amphibians of all life-history
stages as substrates for growth and zoospore pro -
duction. Heavy infections can produce growths of
whitish, thread-like hyphae on embryos and the skin
of larvae and post-metamorphic individuals (Blau -
stein et al. 1994, Berger et al. 2001, Kim et al. 2008,
Ruthig 2009). Besides killing amphibians (Kiesecker
& Blaustein 1995, Romansic et al. 2006, 2007), water
molds can also produce sublethal effects in amphib-
ian hosts that may make them more susceptible to
other stressors such as Bd. For example, embryos
exposed to water mold can hatch sooner, resulting in
hatchlings that are smaller and less advanced in
development (Gomez-Mestre et al. 2006). Further-
more, Uller et al. (2009) demonstrated that moor frog
Rana arvalis exposed to water mold at the embryo
life-history stage do not hatch earlier but still exhibit
decreased mass at metamorphosis, suggesting that
water mold exposure early in development produces
long-lasting sublethal effects. In ad dition, exposure
to water molds could damage the epidermis of larval
and post-metamorphic amphibians and aid coloniza-
tion and growth of Bd, even if water mold infection
does not become established.

Pathogenic water molds are most accurately de -
scribed as sapronotic disease agents (sensu Kuris et
al. 2014) because of their ability to grow and repro-
duce saprobically on dead organic matter (Johnson
et al. 2002), which allows them to persist in the ab -
sence of live hosts (Gleason et al. 2014) and may also
allow them to reach high zoospore densities in
amphibian breeding habitats. Indeed, the shallow lit-
toral zones of lentic amphibian breeding habitats
often accumulate large numbers of dead amphibian
embryos laden with water mold (e.g. Blaustein et al.
1994). In addition, the larvae of many amphibian spe-
cies remain attached to their embryo jelly mass after
hatching, where they may receive extremely large
doses of water mold zoospores because of their prox-
imity to dead embryos, especially when large aggre-
gates of communally laid embryo masses are present
and embryo mortality is high (e.g. Kiesecker &
Blaustein 1997).

Few studies have investigated how water molds
and environmental contamination combine to affect
amphibians (but see Romansic et al. 2006, Karraker &
Ruthig 2009), but a variety of contaminants, in -
cluding heavy metals, insecticides, fungicides, and
herbicides have been tested as cofactors for amphib-
ian chytridiomycosis (e.g. Parris & Baud 2004, Buck
et al. 2012, McMahon et al. 2013). Most of these stud-
ies have found that the contaminant did not magnify
the effects of Bd (but see Rohr et al. 2013, Wise et al.
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2014, Buck et al. 2015). Indeed, contaminants that
have direct negative effects on Bd, such as the
antimicrobial triclosan, the herbicide atrazine, and
the fungicide chlorothalonil, appear to decrease Bd
infection load or diminish the negative effects of Bd
on amphibian survival when initial Bd exposure
occurs in the presence of the contaminant (Brown et
al. 2013, McMahon et al. 2013). Similarly, none of the
few experimental studies on the combined effects of
contaminants and water molds on amphibians have
detected synergistic effects (e.g. Romansic et al.
2006, Puglis & Boone 2007, Karraker & Ruthig 2009).
Indeed, abiotic stressors may in general reduce
impacts on hosts from pathogens and parasites such
as Bd and water molds that have small, free-living
propagules because of the high sensitivity of these
life-history stages to environmental stressors (Laf-
ferty & Kuris 1999, Lafferty & Holt 2003). However,
there are notable counter-examples. In amphibians,
temperature fluctuations can increase Bd infection
loads (Raffel et al. 2013), and ultraviolet-B radiation
magnifies water mold-induced embryo mortality (Kies -
ecker & Blaustein 1995). Thus, reliance of a pathogen
on small, free-living stages such as zoospores does
not necessarily preclude it from interacting synergis-
tically with an abiotic stressor.

We used the herbicide Roundup® Regular as the
abiotic stressor in our study because it is representa-
tive of the glyphosate-based class of herbicides,
which have received considerable attention for their
direct negative effects on amphibian survival (re -
viewed in Relyea 2011). Glyphosate-based herbi-
cides are one the world’s most heavily used classes of
herbicides (Grube et al. 2011). The active ingredient
glyphosate has low toxicity to amphibians (Mann &
Bidwell 1999, Howe et al. 2004), but glyphosate-
based herbicides are usually applied in field formula-
tions that contain surfactants such as polyethoxylated
tallow amine, which is in Roundup® Regular. Various
field formulations of Roundup® have caused mortal-
ity and sublethal effects on growth in amphibians
when tested at ecologically realistic concentrations
(e.g. Mann & Bidwell 1999, Cauble & Wagner 2005,
Relyea 2005a). Furthermore, the lethal toxicity of
Roundup® formulations is magnified by natural biotic
stressors, including predators and competitors (Relyea
2005b, Jones et al. 2011). Therefore, we hypothe-
sized that Roundup® herbicides might cause sub-
lethal damage to amphibians that increases their sus-
ceptibility to becoming infected with Bd or Achlya,
inhibits their ability to keep infection load low, or
decreases their ability to tolerate infection without
dying. However, Roundup® Regular had direct neg-

ative effects on production of Bd zoosporangia and
zoospores in a previous study (Hanlon & Parris 2012),
and we hypothesized that the herbicide might affect
Achlya similarly. Thus, the net effects of Roundup®

herbicides in combination with Bd and Achlya on
amphibian hosts are difficult to predict.

Larvae of Pacific treefrog Hyliola (Pseudacris) reg -
illa were used as hosts because they potentially play
a key role in Bd transmission dynamics. Larval and
post-metamorphic H. regilla can be infected by Bd,
but can often tolerate high Bd infection loads without
dying (Reeder et al. 2012). Although Bd has caused
mortality and sublethal effects in H. regilla in exper-
iments (e.g. Kleinhenz et al. 2012, Gervasi et al. 2013,
Searle et al. 2013, Buck et al. 2015), no Bd- associated
mass mortality events have been observed in this
species. Indeed, populations of H. regilla, including
Bd-infected individuals free of obvious disease, per-
sist during Bd-associated extirpations of southern
mountain yellow-legged frog Rana muscosa, sug-
gesting that H. regilla is a reservoir host that main-
tains Bd and transmits it to other host species that are
more sensitive to the pathogen (Reeder et al. 2012).
Thus, identification of factors that influence Bd infec-
tion status and load in H. regilla, a relatively common
amphibian species with a wide geographic range,
could aid control of chytridiomycosis in Bd-sensitive
species that co-occur with H. regilla. For example,
managers might be able to remove or lessen factors
found to increase Bd zoospore production in H.
regilla and thereby reduce the risk of infection in co-
occurring amphibian species.

MATERIALS AND METHODS

Collection and maintenance of Hyliola regilla

Thirty-two masses of Hyliola regilla embryos
(developmental stages 16−20 according to Gosner
1960) were collected on 1 June 2007 at Little Three
Creek Lake, a natural amphibian breeding site in the
Deschutes National Forest in the Central Oregon
Cascade Range (44.102° N, 121.642° W), 26.4 km
west northwest of Bend, Oregon. Prior to experimen-
tation, H. regilla were kept in 38 l glass aquaria filled
with approximately 35 l of aerated water (8 embryo
clutches per aquarium) and transferred to new tanks
with new water every 7−8 d. Four days after comple-
tion of hatching, the larvae in each aquarium were
evenly divided between 2 new tanks and maintained
thereafter at a density of 1.6−5.7 larvae l−1 of water.
Before and during experimentation, larvae were fed
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a mixture (3:1 by volume) of rabbit chow and
Tetramin® (Tetra) fish flakes and kept under a natu-
ral photoperiod at 14.5−17.0°C. Water, unless other-
wise noted, was dechlorinated tapwater conditioned
with NovAqua® and Amquel® (Novalek; 0.12 ml of
each conditioner per l of water) to remove any resid-
ual chlorine, protect against pH changes, and pre-
vent buildup of ammonia.

Pathogen sources

Water mold was isolated from a water sample
taken on 20 May 2007 at Lost Lake in the Willamette
National Forest (44.434° N, 121.901° W), 32.1 km
northwest of Sisters, Oregon. Isolation used sterile
hemp seeds and yeast-glucose agar media following
Fuller & Jaworski (1987). We identified the resulting
water mold isolate as a member of the genus Achlya
using available keys and standard methods (Johnson
1956, Johnson et al. 2002). Achlya dosages were pre-
pared by adding a yeast-glucose agar plug contain-
ing actively growing Achlya hyphae to each of 35
sterile, standard-sized (diameter = 9 cm) Petri dishes
filled with 46 ml of sterile ultrapure water and 30
sterile hemp seeds. Achlya dosages were incubated
at 21.5−23.0°C for 11 d, which produced clumps of
seeds connected by Achlya hyphae. Bd isolate JEL
274 (originally isolated from Anaxyrus boreas from
Colorado) was grown on sterile, standard-sized (diam-
eter = 9 cm) Petri dishes containing 1% tryptone agar
media. Bd cultures were incubated for 10 d at 21.0−
23.5°C and subsequently maintained at 4−5° C for
12 d before experimentation to prevent overgrowth.

Experimental design

We used a 2 × 2 × 3 randomized factorial design
with 2 treatments (present and absent) for Bd and
Achlya and 3 treatments of Roundup® Regular (Mon-
santo; hereafter Roundup®) with nominal Roundup®

concentrations of 0, 1, and 2 mg active ingredient l−1

(hereafter; a.i. l−1), which are equal to 0, 0.75, and 1.5
acid equivalents a.i. l−1). These ecologically realistic
levels are within the range of gly phosate active
ingredient concentrations measured in aquatic habi-
tats, although they are close to the upper limit of this
range (Thompson et al. 2004, Relyea 2006). The
experiment had 5 replicates of each treatment com-
bination, for a total of 60 experimental units. Each
experimental unit consisted of a 9 l aquarium filled
(tank) with 2 l of water and stocked with 6 H. regilla

larvae. Groups of 6 larvae were chosen haphazardly
from laboratory stocks (33−49 d post-hatching; devel-
opmental stages 25−29 [Gosner 1960]; mean weight
± SE = 117 ± 12 mg; mean total length ± SE = 15.3 ±
0.9 mm) and then randomly assigned to experimental
units.

To ensure that food was always available, we
added 25 mg of food per live larva at the start of the
experiment and 5 and 9 d later. Larvae were counted
and examined visually for hyphae consistent with
Achlya infection daily. The rest of the contents of the
aquaria were also inspected daily for hyphae consis-
tent with the growth of Achlya or other water molds.
Dead larvae were removed and preserved in 70%
ethanol. After 14 d, the experiment was ended and
surviving larvae were euthanized using MS-222 and
preserved in 70% ethanol. All preserved specimens
were re-examined visually for hyphae, and each pre-
served specimen not used for quantification of Bd
infection was re-examined again for hyphae under a
dissecting microscope at 10× and 40× magnification
for at least 5 min. We used visual and microscopic
examination to check for Achlya infection because
molecular methods for quantifying Achlya infection
have not yet been developed. Visual and microscopic
examination are often sufficient to detect water mold
infection (e.g. Blaustein et al. 1994, Berger et al.
2001, Gomez-Mestre et al. 2006). Indeed, Romansic
et al. (2006) found that visual inspection of live larvae
combined with examination of dead individuals
under a dissecting microscope successfully identified
hyphae consistent with infection by the water mold
Saprolegnia diclina in northern red-legged frog Rana
aurora. Bd infection status (infected or not infected)
and load were measured using quantitative real-time
PCR (Boyle et al. 2004, Hyatt et al. 2007) on pre-
served specimens for a subset of individuals in the
Bd-absent treatment and all individuals in the Bd-
present treatment, except for 4 that died and were
completely eaten by conspecifics before they could
be removed from experimental units and 2 for which
preserved specimens were lost because of experi-
mental error (see ‘Quantification of Bd infection’).
Following Catenazzi et al. (2014), we scored a sample
as infected with Bd if any amount of Bd was detected.

Application of treatments

Each of 60 9 l glass aquaria were randomly as -
signed to a treatment combination and filled with 2 l
of water containing the appropriate concentration of
Roundup® prior to addition of larvae. Roundup®
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solutions were prepared using a 100 mg a.i. l−1 stock
solution of commercially obtained Roundup® diluted
with ultrapure water. Due to the large volume of
water required for the experiment, Roundup® con-
centrations of 1 and 2 mg a.i. l−1 were each prepared
by adding the appropriate amount of stock solution
(248 and 500 ml, respectively) to each of two 38
 gallon glass aquaria containing 24.5 l of water
and mixing using a glass stirring rod. Water from
the 2 aquaria was then homogenized by transfer-
ring water back and forth between the 2 aquaria
using clean glass beakers. Control water containing
no Roundup® was prepared for the 0 mg a.i. l−1

Roundup® treatment in the same way, except that no
Roundup® stock solution was added.

Each aquarium in the Achlya-present treatment
received 30 Achlya-laden hemp seeds lifted out of
their incubation dish using stainless steel clean for-
ceps. Aquaria in the Achlya-absent treatment each
received 30 hemp seeds treated identically to those
in the Achlya-present treatment, except that they
were prepared using a sterile agar plug. Bd inoculum
was obtained by flooding each of 35 Petri dishes con-
taining Bd isolate JEL 274 with 2.0 ml of ultrapure
water, stirring the dishes, and combining the result-
ing zoospore solutions. Each aquarium in the Bd-pre-
sent treatment received 1.0 ml of Bd inoculum. We
treated Bd-absent aquaria the same way, except that
they each received a sham inoculum from sterile
Petri dishes containing 1% tryptone agar media.

Larvae were transferred to new aquaria with new
water lacking Roundup® and pathogen treatments
after 8 d. For simplicity, treatments were not re newed;
thus, the experiment employed pulse-type exposures
to Roundup® and the pathogens. However, we expect
that the Achlya included a press-type component
because Achlya inocula likely continued to release
zoospores over the entire first 8 d.

Zoospore densities

Because of logistical constraints, zoospore density
was not estimated directly from the Achlya and Bd
inocula. Instead, unused cultures from the same
pathogen stocks used in experimentation were se -
lected randomly and used to estimate zoospore den-
sities in the Achlya-present and Bd-present treat-
ments. One Achlya dosage was lifted out of its Petri
dish, placed in a new Petri dish, and rinsed with
10.0 ml of ultrapure water. For Bd, 1 Petri dish con-
taining a Bd culture was flooded with 3.0 ml of ultra-
pure water and stirred. We counted zoospores in

these representative zoospore solutions using a
hemacytometer. Initial concentrations of Achlya zoo-
spores in the Achlya-present treatment and Bd zoo-
spores in the Bd-present treatment were calculated
using extrapolation based on the volume of water in
the aquaria. The initial concentration of Achlya zoo-
spores in the Achlya-present treatment was approxi-
mately 1.4 × 107 zoospores l−1 and the initial concen-
tration of Bd zoospores in the Bd-present treatment
was approximately 1.2 × 106 zoospores l−1.

Quantification of Bd infection

DNA was extracted from excised mouthpart tissue
using PrepMan Ultra (Applied Biosystems), and one-
eighth of the resulting template was assayed for Bd at
1:10 dilution using quantitative real-time PCR (Boyle
et al. 2004). To check for Bd contamination in the Bd-
absent treatment (the control treatment for the Bd-
present treatment), we analyzed a subset of individu-
als in the Bd-absent treatment for Bd infection. One
randomly chosen preserved specimen in each of 2
randomly chosen experimental units in each Bd-
absent treatment combination (12 individuals in
total) was analyzed in addition to 1−6 randomly cho-
sen individuals from 4 other Bd-absent experimental
units chosen at random (15 additional individuals). In
addition, blank extraction controls were introduced
during DNA extraction and processed alongside
specimens to check for Bd DNA cross-contamination.
Blank extraction controls consisted of microcen-
trifuge tubes identical to and treated identically to
those used for processing specimens, except that
they contained no specimen material.

Statistical analyses

The percentage of larvae infected with Bd and aver-
age Bd load were determined for each experimental
unit, arcsine square-root transformed (percentage of
larvae infected) or natural log(x+1) transformed
(average load) to meet parametric assumptions, and
analyzed using linear regression. Thus, inferences
about Bd load pertain to the median of tank-wide
averages. We treated Achlya and Bd as nominal fac-
tors and Roundup® concentration as a continuous
factor. Interactive effects of Achlya and Roundup®

were investigated using simple effect tests (Keppel &
Wickens 2004) to evaluate the Achlya effect at each
Roundup® concentration. To maintain α at 0.05 while
performing 3 separate tests for Achlya effects, simple
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effect tests used a Bonferroni-adjusted critical p-
value of 0.017 for rejection of null hypotheses. We
 analyzed survival using Cox proportional hazards
modeling, with a maximum likelihood ratio test to
compare the explanatory power of the resulting
model to that of null model containing no treatment
effects. A nonsignificant maximum likelihood test
 indicates a lack of significant treatment effects
 (Ramsey & Schafer 1997). All analyses started with a
full model including all interaction factors and a
quadratic Roundup® term. However, the quadratic
Roundup® term was always nonsignificant (all p ≥
0.330) and was therefore dropped from all analyses.
Nonsignificant interactions with p > 0.1 were also
dropped. Thus nonsignificant interaction factors were
liberally included in analyses. However, use of the
more conservative approach of dropping all interac-
tion factors with p > 0.05 did not change any qualita-
tive interpretations of results. All statistical analyses
were performed using R (version 2.15.3; R Core Team
2013).

RESULTS

Bd infection prevalence

No Bd infection was detected in Hyliola regilla
 larvae in the Bd-absent treatment. Within the Bd-
present treatment, the mean percentage of larvae
infected with Bd ranged from 0 to 37.3% across the
different combinations of Roundup® and Achlya
(Fig. 1). Regression results indicated a significant
Roundup × Achlya interaction factor consistent with
less-than-additive (antagonistic) interactive effects of
Roundup® and Achlya on Bd prevalence (t26 =
−2.250, p = 0.033). When Roundup® was absent, the
proportion of Bd-exposed larvae infected with Bd
was higher in the Achlya-present treatment com-
pared with the Achlya-absent treatment (t26 = 2.642,
p = 0.014). This difference was significant after appli-
cation of the Bonferroni method to maintain α =
0.05 (see ‘Statistical analyses’). Similarly, more Bd-
ex posed larvae were infected with Bd in the Achlya-
present treatment compared with the Achlya-absent
treatment when the Roundup® concentration was
low (1 mg a.i. l−1), but this difference was smaller in
magnitude than the difference between the Achlya-
present and Achlya-absent treatments in the no-
Roundup® control and nonsignificant (t26 = 1.422, p =
0.167). In addition, the pattern of elevated Bd preva-
lence in the Achlya treatment was eliminated when
the Roundup® concentration was further increased;

in the high Roundup® treatment (2 mg a.i. l−1), more
Bd-exposed larvae were infected with Bd when
Achlya was absent compared with when it was pres-
ent, although this difference was nonsignificant (t26 =
−0.843, p = 0.407).

Overall, Bd infection prevalence dropped as
Roundup® concentration increased. Only 2 individu-
als in the high Roundup® treatment, both of which
were in the high Roundup®−Achlya-absent treat-
ment combination, were infected with Bd. Neverthe-
less, the effect of Roundup® alone was not significant
(t26 = −0.758, p = 0.455). Bd was not detected in any
individuals in the Bd-absent treatment or any blank
extraction controls, consistent with a lack of Bd con-
tamination in the Bd-absent treatment and a lack of
cross-contamination in the PCR analysis.

Bd infection load

Only 2 individuals in the high Roundup® treatment
were infected with Bd, but one of these individuals
had the highest Bd load in the experiment (3.00 × 104

genome equivalents [ge]), which produced an out -
lying observation in the multiple regression analysis
of average Bd load (Fig. 2). Nevertheless, we de -
tected a robust dose-dependent negative effect of
Roundup® on Bd infection loads. Exclusion of the
outlying ob servation, which had a positive influence
on the Roundup® regression coefficient, did not in-

232

*

0

5

10

15

20

25

30

35

40

45

0 1 2
Roundup concentration (mg of a.i. l–1)

P
er

ce
nt

 in
fe

ct
ed

Achlya

absent

present

Fig. 1. Percentage of Bd-exposed Hyliola regilla larvae in-
fected with Bd. No larvae were infected in the Achlya-
 present treatment at the highest Roundup® concentration.
Error bars are ±1 SE. Total number of larvae represented in
each column, from left to right, is 29, 29, 28, 29, 29, and 30.
a.i.: active ingredient. * denotes the significant difference
between the Achlya-present and Achlya-absent treatments



Romansic et al.: Water mold, herbicide, and amphibian chytridiomycosis

fluence the qualitative interpretation or results, so the
outlier was retained. The standard error of raw zoo-
spore loads within individual experimental units in
the Bd-present treatment ranged from 0 to 843 ge,
and the average standard error across these 30 exper-
imental units was 73 ge. Increasing Roundup® con-
centration caused a multiplicative decrease in Bd
loads of Bd-exposed larvae (t27 = −2.059, p = 0.049).
Each increase in Roundup® concentration of 1 mg a.i.
l−1 was associated with an 87.24% decrease in the
median Bd load. In contrast to Roundup®, Achlya did
not affect median Bd load (Fig. 2; t27 = 0.176, p = 0.
861). The Roundup® × Achlya interaction was also
nonsignificant, indicating that the effect of Roundup®

did not depend on the presence or absence of Achlya
(t26 = −1.712, p = 0.137).

Achlya infection

Visual inspection of larvae during the experiment
and during excision of mouthparts revealed no
hyphae consistent with Achlya infection. Similarly,
microscopy revealed such hyphae on only 1 individ-
ual. This individual, which died 2 d after the start
of the experiment, was in the Achlya-present−Bd-
absent treatment combination in the low (1 mg a.i.
l−1) Roundup® treatment and had coenocytic hyphae
on its mouthparts and snout and the side of its body.
Continued growth of hyphae on the Achlya-laden

hemp seeds in the Achlya-present
 treatment was visually observed during
the 8 d exposure period at the start of
the experiment. No other hyphae were
ob served on any larvae or other tank
contents. All individuals that died dur-
ing the experiment were partially or
completely eaten by conspecifics be -
fore removal and preservation, which
might have limited the detectability of
hyphae.

Survival

Survival of H. regilla larvae ranged
from 80 to 96.7% across the different
treatment combinations. Cox Propor-
tional Hazards modeling resulted in a
full model containing all main and
interaction factors. However, compari-
son of this model with the null model
indicated that none of the experimental

factors significantly influenced survival (maximum
likelihood ratio test, χ7

2 = −10.6, p = 0.157).

DISCUSSION

Effects of Achlya on Bd infection

Our results are consistent with synergistic effects of
Achlya and Bd that were removed by Roundup®. In
the absence of Roundup®, Bd infection among Bd-
exposed larvae was more common when larvae were
also exposed to Achlya compared with when Achyla
was absent, suggesting that Achlya increased the
susceptibility of larvae to becoming infected with Bd.
However, this Achlya effect diminished and became
nonsignificant when Roundup® was present and dis-
appeared completely at the highest Roundup® con-
centration. Although Achlya did not influence Bd
infection loads, its effect on the prevalence of Bd
infection indicates that it could play an important
facilitative role in chytridiomycosis dynamics. Our
study, the first to describe experimental effects con-
sistent with synergistic effects of Bd and another
microbe, suggests that Achlya spp. and other water
molds could contribute to the widespread and often
severe effects of Bd on individual amphibian hosts
and host populations.

Our experiment was not designed to determine
the mechanism behind interactive effects of Achlya
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Fig. 2. Bd infection load of Bd-exposed Hyliola regilla larvae in the (a)
Achlya-absent and (b) Achlya-present treatments. Each triangle represents
the average Bd load for a single experimental unit. Average loads have been
natural log(x+1) transformed and are thus shown on the natural log(x+1)
scale. Data points are jittered horizontally for clarity. Lines indicate least-
squared multiple regressions. In accordance with the model selected by
multiple regression analysis, lines reflect only the main (significant) effect 

of Roundup® and the main (nonsignificant) effect of Achlya



Dis Aquat Org 123: 227–238, 2017

and Bd. However, we postulate that germ tubes
from colonizing Achlya zoospores or hyphae from
Achlya infections may have physically damaged the
epidermis of larvae, including the mouthparts,
opening pathways that facilitated colonization of the
mouthparts by Bd zoospores. Chemicals produced
by Achlya that promote invasion of the host by germ
tubes or digestion of host tissues might have con-
tributed to such damage. Alternatively, Achlya zoo-
spores landing on larvae might have disrupted micro -
flora on the larval epidermis that protect against Bd
infection.

Hyphae consistent with Achlya infection were de -
tected on only one Achlya-exposed larva. However,
some Achlya infections might have gone undetected
because of consumption of hyphae during feeding of
larvae on dead and dying conspecifics. All individu-
als that died during the experiment were at least par-
tially eaten by conspecifics before the carcass was
found and removed, consistent with observations in
several frog species that larvae sometimes feed on
conspecific larvae by scavenging their carcasses or
through active cannibalism (reviewed in Heinen &
Abdella 2005). Furthermore, Gomez-Mestre et al.
(2006) observed wood frog Rana sylvatica larvae eat-
ing water mold hyphae off infected American toad
Bufo americanus eggs. In addition, light Achlya
infections might have gone undetected by visual
inspections during the experiment and been cleared
before it ended. Additional studies that elucidate the
effects of Achlya and other water molds on the epi-
dermis and immune system of amphibian hosts are
needed to determine the mechanism behind the
observed correlation between exposure to water
mold and increased prevalence of Bd infection.

Effects of Roundup® on Bd infection

Unlike Achlya, Roundup® exerted a negative in -
fluence on Bd. Roundup® removed the positive effect
of Achlya on the proportion of Hyliola regilla larvae
infected with Bd, perhaps by killing Achlya zoo-
spores, reducing their production or infectivity, or
causing a shift from parasitism to saprobism. In addi-
tion, Roundup® alone decreased Bd loads of Bd-
exposed larvae in a dose-dependent manner. Simi-
larly, Bd infection in the absence of water mold
became less common as Roundup® concentration
increased, although this relationship was not statis -
tically significant. Nevertheless, the pattern of re -
duced prevalence of Bd infection contributed to the
observed decrease in Bd loads as Roundup® concen-

tration increased. In addition, Roundup® may have
reduced the infection severity of Bd-infected individ-
uals, but too few larvae were infected with Bd to
allow effective testing of this hypothesis.

The negative influence of Roundup® on Bd loads
probably arose from the direct negative effects of
Roundup® on Bd (Hanlon & Parris 2012), which may
have included decreased survival, motility, or infec-
tivity in free-swimming zoospores, as well as mortal-
ity, slowed development, or decreased zoospore
 production in zoosporangia growing on  larvae.
However, even the highest Roundup® concentration
did not completely eliminate Bd in fection. Also,
because individuals that escape or clear Bd infec-
tion during exposure to Roundup® could become
infected with the fungus later, further study is
needed to determine whether the negative effects of
Roundup® on Bd lead to long-term changes in dis-
ease dynamics.

Host survival

The effects of Roundup® and Achlya on Bd infec-
tion did not change host survival. Cox proportional
hazards modeling of survival found no evidence for
effects of any of the experimental factors. Thus, H.
regilla larvae were less susceptible to Roundup® in
our study compared with a previous study in which
no H. regilla larvae survived exposure to Roundup®

at concentrations of 1.0 mg a.i. l−1 or greater (King
& Wagner 2010). However, these 2 studies used dif-
ferent methods. For example, larvae in our study
were larger and more advanced in development
than those in King & Wagner (2010). In addition, H.
regilla larvae in our study were susceptible to be -
coming infected with Bd but were resistant to the
lethal effects of this fungus, consistent with some
but not all previous studies on this species (e.g.
Blaustein et al. 2005, Garcia et al. 2006, Romansic
et al. 2011, Reeder et al. 2012). Larval and newly
metamorphosed H. regilla have exhibited Bd-
induced mortality in other studies (Kleinhenz et al.
2012, Gervasi et al. 2013, Searle et al. 2013, Buck
et al. 2015), including Rumschlag et al. (2014), in
which Bd was lethal under some but not all tem-
perature conditions. This suggests that interactive
effects of Achlya and Roundup® on Bd infection
could, in some situations, influence survival in this
species. Regardless, in species that are less tolerant
of Bd infection than H. regilla, Achlya-induced
facilitation of Bd would likely have strong effects
on survival.
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CONCLUSIONS

The negative influence of Roundup® on Bd load,
coupled with the lack of a synergistic effect of Round -
up® on the proportion of larvae infected with Bd, sug-
gests that the direct negative effects of Roundup® on
Bd were more important than the direct negative ef-
fects of Roundup® on the amphibian host in deter-
mining patterns of chytridiomycosis in larval hosts.
The relative importance of these opposing effects
may have been influenced by the relatively low toxic-
ity of Roundup® to host larvae in our study. However,
Hanlon & Parris (2014) found that exposure of east-
ern gray treefrog Hyla versicolor larvae to 2.0 or
3.5 mg a.i. l−1 of a similar Roundup® formulation, de-
spite being toxic enough to cause mortality, led to de-
creased Bd-induced mortality, a result similar to our
finding of reduced Bd load. Our results also fit those
of other previously published experiments performed
in laboratory, mesocosm, and field venues in which
glyphosate-based herbicides, including various Round -
up® formulations, inhibited amphibian chytridiomy-
cosis or had no detectable effect on the disease (Edge
et al. 2011, 2013, Gahl et al. 2011, Paetow et al. 2012,
Hanlon & Parris 2014). Roundup®-induced reductions
in amphibian survival, although not evident in the H.
regilla larvae used in this study, could also limit
the ability of Roundup® to promote Bd, because re-
ductions in host density will reduce the rate of Bd
transmission in amphibian host populations if Bd
transmission is density dependent. Thus, the available
evidence points away from Roundup® formulations
being cofactors that intensify the effects of Bd on am-
phibians. However, the full range of realistic exposure
scenarios has not been adequately investigated yet.
For example, although 2 studies exposed amphibians
to Roundup® after previous exposure to Bd, these
studies allowed only 24 (Edge et al. 2013) or 48 h
(Hanlon & Parris 2014) between exposures. Because
Bd may be protected from Roundup® surfactants if it
is within amphibian tissue, experiments are needed
that allow infections to become well-established be-
fore amphibians are challenged with the herbicide.
Even if Roundup® does not facilitate Bd in such a sce-
nario, the long-term effects of Bd infection could
make amphibians more susceptible to the toxic effects
of Roundup®.

Our finding of an association between Achlya ex -
posure and Bd infection prevalence, combined with
the near ubiquity of water molds in amphibian habi-
tats, including aquatic water bodies and moist soils
(Johnson et al. 2002), underscores the potential
importance of water molds in chytridiomycosis and

amphibian population declines. Therefore, we pro-
pose further investigation of water molds as potential
environmental cofactors in the Bd−amphibian host−
pathogen system. Based on the moderating effect of
Roundup® observed in our study, we predict that
water mold−Bd interactions are highly dependent
on environmental context. Indeed, Romansic et al.
(2011) found that Achlya flagellata did not facilitate
Bd infection in H. regilla larvae. But Romansic et al.
(2011) had key differences in pathogen dosage, lar-
val density, water mold strain, and temperature. In
some cases, water molds could outcompete Bd on
amphibian hosts and thereby reduce chytridiomyco-
sis impacts. However, positive effects of water molds
on Bd could intensify and prolong Bd-associated
mass mortality events and population declines in Bd-
susceptible species, especially because pathogenic
water molds can proliferate without live hosts. More-
over, increased Bd prevalence in Bd-tolerant species
such as H. regilla could lead to increased transmis-
sion of the fungus to amphibian species that are less
tolerant of Bd infection, further exacerbating amphi -
bian losses. Because of the numerous ecological
pathways by which interactive effects of pathogens
might impact amphibian populations, we call for fur-
ther investigation of multifactor exposures involving
not only water molds and Bd, but also other disease-
causing organisms, including bacteria, viruses, and
trematodes.
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